
Digi XBee® 3 ZigBee®
RF Module

User Guide

Revision history—90001539

Revision Date Description

D November
2018

Added Bluetooth (BLE) support, SPI support, and Custom Default
AT commands.

E April 2019 Added sleep support, file system, OTA file system updates, and several
MicroPython features.

F September
2019

Adding/updating relay frames. Added%P.
Added statuses to the 0x8A frame. Added location AT commands. Added
DM.
Added the I/O support section. Added%P, *S, *V, *W, *X, *Y, SA, AZ,
FS INFO FULL, and DM. Updated RR. Updates to Remote AT Command
Request frame. Added location and BLE commands. Added statuses to
the 0x8A frame. Added frames Ox2C, 0x2D, 0x2E, 0x89, 0x98, 0xAC, 0xAE,
and 0xAD. Added Get started with BLE and BLE reference sections. Made
changes to the CCA operations section. Added reserved endpoints to
0x11 frame.

G April 2020 Added centralized trust center backups. Added the BK, BP, CX, R?, US,
RK, and KB commands. Added OTA upgrades. Added Open Join
Window indication.

H May 2020 Revised all API frame descriptions. Added ZDO cluster commands and
information.

J September
2020

Added a note to D8. UpdatedOTA firmware/file system upgrades.
Updated Considerations for older firmware versions.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2020 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

Digi XBee® 3 Zigbee® RF Module 2

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name andmodel
 Product serial number (s)
 Firmware version
 Operating system/browser (if applicable)
 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce
Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (Digi XBee® 3 Zigbee® RF Module, 90001539 J) in the
subject line of your email.

Digi XBee® 3 Zigbee® RF Module 3

http://www.digi.com/howtobuy/terms
http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Digi XBee® 3 Zigbee® RF Module
Applicable firmware and hardware 18
Change the firmware protocol 18
Regulatory information 18

Get started

Configure the XBee 3 Zigbee RF Module
Configure the device using XCTU 21
Custom defaults 21

Set custom defaults 21
Restore factory defaults 21
Limitations 21

Custom configuration: Create a new factory default 21
Set a custom configuration 22
Clear all custom configuration on a device 22

XBee bootloader 22
Send a firmware image 22
Software libraries 23
XBee Network Assistant 23
XBee Multi Programmer 24

Update the firmware over-the-air
Add the device to XCTU 26
Update to the latest firmware 26

Get started with MicroPython
About MicroPython 28
MicroPython on the XBee 3 Zigbee RF Module 28
Use XCTU to enter the MicroPython environment 28
Use the MicroPython Terminal in XCTU 29
MicroPython examples 29

Example: hello world 29
Example: enter MicroPython paste mode 29
Example: use the time module 30

Digi XBee® 3 Zigbee® RF Module 4

Digi XBee® 3 Zigbee® RF Module 5

Example: AT commands using MicroPython 30
MicroPython networking and communication examples 31

Zigbee networks with MicroPython 31
Example: forming and joining a Zigbee network using MicroPython 32
Example: network Discovery using MicroPython 33
Examples: transmitting data 34
Receiving data 35
Example: communication between two XBee 3 Zigbee modules 36

Exit MicroPython mode 39
Other terminal programs 39

Tera Term for Windows 39
Use picocom in Linux 40
Micropython help () 41

Secure access
Secure Sessions 44

Configure the secure session password for a device 44
Start a secure session 44
End a secure session 45

Secured remote AT commands 45
Secure a node against unauthorized remote configuration 45
Remotely configure a node that has been secured 46

Send data to a secured remote node 47
End a session from a server 47
Secure Session API frames 48
Secure transmission failures 48

Data Frames - 0x10 and 0x11 frames 49
Remote AT Commands- 0x17 frames 49

File system
Overview of the file system 51
Directory structure 51
Paths 51
Limitations 51
XCTU interface 52

Get started with BLE
Enable BLE on the XBee 3 Zigbee RF Module 54
Enable BLE and configure the BLE password 54
Get the Digi XBee Mobile phone application 55
Connect with BLE and configure your XBee 3 device 56

BLE reference
BLE advertising behavior and services 58
Device Information Service 58
XBee API BLE Service 58
API Request characteristic 58
API Response characteristic 59

Digi XBee® 3 Zigbee® RF Module 6

Serial communication
Serial interface 61
UART data flow 61

Serial data 61
Serial buffers 62

Serial receive buffer 62
Serial transmit buffer 63

UART flow control 63
CTS flow control 63
RTS flow control 63

Break control 63
I2C 64

SPI operation
SPI communications 66
Full duplex operation 66
Low power operation 67
Select the SPI port 68
Force UART operation 69

Modes
Transparent operating mode 71

Serial-to-RF packetization 71
API operating mode 71
Commandmode 71

Enter Commandmode 72
Troubleshooting 72
Send AT commands 72
Response to AT commands 73
Apply command changes 73
Make command changes permanent 73
Exit Commandmode 73

Idle mode 74
Transmit mode 74
Receive mode 75
Sleepmode 75

Zigbee networks
The Zigbee specification 77
Zigbee stack layers 77
Zigbee networking concepts 78

Device types 78
PAN ID 80
Operating channels 80

Zigbee application layers: in depth 81
Application Support Sublayer (APS) 81
Application profiles 81

Zigbee coordinator operation 83
Form a network 83

Digi XBee® 3 Zigbee® RF Module 7

Security policy 83
Channel selection 83
PAN ID selection 83
Persistent data 83
Coordinator startup 84
Permit joining 85
Reset the coordinator 85
Leave a network 86
Replace a coordinator (security disabled only) 86
Example: start a coordinator 87
Example: replace a coordinator (security disabled) 87

Router operation 88
Discover Zigbee networks 88
Join a network 88
Authentication 88
Persistent data 88
Router joining 89
Router network connectivity 90

End device operation 92
Discover Zigbee networks 92
Join a network 93
Parent child relationship 93
End device capacity 93
Authentication 93
Persistent data 94
Orphan scans 94
End device joining 94
Parent connectivity 95
Reset the end device 95

Channel scanning 95
Manage multiple Zigbee networks 96
Filter PAN ID 96
Configure security keys 96
Prevent unwanted devices from joining 96
Application messaging framework 97

Transmission, addressing, and routing
Addressing 99

64-bit device addresses 99
16-bit device addresses 99
Application layer addressing 99

Data transmission 99
Broadcast transmissions 100
Unicast transmissions 100
Address resolution 100
Address table 101
Group table 102

Binding transmissions 102
Multicast transmissions 102

Address resolution 102
Address resolution 102
Binding table 103

Fragmentation 103
Data transmission examples 103

Digi XBee® 3 Zigbee® RF Module 8

Send a packet in Transparent mode 103
Send data in API mode 104
API frame examples 105

RF packet routing 105
Link status transmission 106
AODV mesh routing 107
Many-to-One routing 110
High/Low RAM Concentrator mode 110
Source routing 110

Encrypted transmissions 115
Maximum RF payload size 115
Throughput 117
ZDO transmissions 117

Send a ZDO command 118
Receiving ZDO command and responses 118
Support ZDOs with the XBee API 122
Support the ZDP with the XBee API 122
ZDO Clusters 123
API example 1 139
API example 2 140
API example 3 141
API example 4 142
API example 5 143
API example 6 144
API Example 7 145

Transmission timeouts 146
Unicast timeout 147
Extended timeout 147
Transmission examples 148

Zigbee security
Security overview 151
Network key 151
Link key 151

Preconfigured link key - moderate security 152
Well-known default link key - low security 152
Install code derived link key - high security 152

Join window 152
Key management 153

Centralized security 153
Distributed security 154

Device registration 154
Centralized trust center 154
Distributed trust center 155
Example: Form a secure network 155
Example: Join a secure network using a preconfigured link key 156
Example: Register a joining node without a preconfigured link key 156
Example: Register a joining node using an install code 157
Example: Deregister a previously registered device 158
Registration scenario 158

Digi XBee® 3 Zigbee® RF Module 9

Centralized trust center backup
Create the backup file 161

New networks 161
Existing networks 161

Store the file 161
Recover a Centralized Trust Center 161
Best practices 162
Network commissioning and diagnostics 163

Place devices 163
Device discovery 164
Commissioning pushbutton and associate LED 165
Binding 168
Group Table API 172

Manage End Devices
End device operation 183
Parent operation 183

End Device poll timeouts 184
End Device child table 184
Packet buffer usage 184

Non-Parent device operation 185
End Device configuration 185

Pin sleep 186
Cyclic sleep 188

Recommended sleep current measurements 194
Achieve the lowest sleep current 194
Compensate for switching time 194
Internal pin pull-ups 194

Transmit RF data 195
Receiving RF data 195
I/O sampling 195
Wake end devices with the Commissioning Pushbutton 195
Parent verification 195
Rejoining 196
Router/Coordinator configuration 196

RF packet buffering timeout 196
Child poll timeout 197
Adaptive polling 197
Transmission timeout 197

Short sleep periods 197
Extended sleep periods 197
Sleep examples 198

Example 1: Configure a device to sleep for 20 seconds, but set SN such that the On/sleep
line will remain de-asserted for up to 1 minute. 198
Example 2: Configure an end device to sleep for 20 seconds, send 4 I/O samples in 2
seconds, and return to sleep. 198
Example 3: configure a device for extended sleep: to sleep for 4 minutes. 199

I/O support
Digital I/O support 201
Analog I/O support 201

Digi XBee® 3 Zigbee® RF Module 10

Monitor I/O lines 202
I/O sample data format 203
API frame support 204
On-demand sampling 204

Example: Commandmode 204
Example: Local AT command in API mode 205
Example: Remote AT command in API mode 205

Periodic I/O sampling 206
Source 206
Destination 207

Digital I/O change detection 207
I/O behavior during sleep 207

Digital I/O lines 208
Analog and PWM I/O Lines 208

AT commands
Networking commands 210

CE (Device Role) 210
ID (Extended PAN ID) 210
II (Initial 16-bit PAN ID) 210
ZS (Zigbee Stack Profile) 211
CR (Conflict Report) 211
NJ (Node Join Time) 212
DJ (Disable Joining) 212
NR (Network Reset) 213
NW (Network Watchdog Timeout) 213
JV (Coordinator Join Verification) 213
JN (Join Notification) 214
DO (Miscellaneous Device Options) 214
DC (Joining Device Controls) 215
C8 (Compatibility Options) 216

Discovery commands 216
NI (Node Identifier) 216
DD (Device Type Identifier) 217
NT (Node Discover Timeout) 217
NO (Network Discovery Options) 217
ND (Network Discovery) 218
DN (Discover Node) 219
AS (Active Scan) 219

Operating Network commands 220
AI (Association Indication) 220
OP (Operating Extended PAN ID) 221
OI (Operating 16-bit PAN ID) 221
CH (Operating Channel) 221
NC (Number of Remaining Children) 221

Zigbee Addressing commands 221
SH (Serial Number High) 222
SL (Serial Number Low) 222
MY (16-bit Network Address) 222
MP (16-bit Parent Network Address) 222
DH (Destination Address High) 222
DL (Destination Address Low) 223
TO (Transmit Options) 223
NP (Maximum Packet Payload Bytes) 224

Digi XBee® 3 Zigbee® RF Module 11

Zigbee configuration commands 224
NH (Maximum Unicast Hops) 224
BH (Broadcast Hops) 225
AR (Aggregate Routing Notification) 225
SE (Source Endpoint) 225
DE (Destination Endpoint) 226
CI (Cluster ID) 226

Security commands 227
EE (Encryption Enable) 227
EO (Encryption Options) 227
KY (Link Key) 228
NK (Trust Center Network Key) 228
RK (Trust Center Network Key Rotation Interval) 228
KT (Trust Center Link Key Registration Timeout) 229
I? (Install Code) 229
DM (Disable Features) 229
BK (Centralized Trust Center Backup and Restore) 230
CX (Centralized Trust Center Network Information Update) 231
KB (Centralized Trust Center Backup Key) 231

Secure Session commands 232
SA (Secure Access) 232
*S (Secure Session Salt) 232
*V, *W, *X, *Y (Secure Session Verifier) 233

RF interfacing commands 233
PL (TX Power Level) 233
PP (Output Power in dBm) 233
SC (Scan Channels) 234
SD (Scan Duration) 235

MAC diagnostics commands 235
EA (MAC ACK Failure Count) 235
DB (Last Packet RSSI) 235
ED (Energy Detect) 236

Sleep settings commands 236
SM (Sleep Mode) 236
SP (Cyclic Sleep Period) 237
ST (Cyclic Sleep Wake Time) 237
SN (Number of Sleep Periods) 237
SO (Sleep Options) 237
WH (Wake Host Delay) 238
PO (Polling Rate) 238
ET (End Device Timeout) 238
SI (Sleep Immediately) 239

MicroPython commands 239
PS (Python Startup) 240
PY (MicroPython Command) 240

File System commands 241
FS (File System) 241
FK (File System Public Key) 243

Bluetooth Low Energy (BLE) commands 243
BT (Bluetooth Enable) 243
BL (Bluetooth Address) 244
BI (Bluetooth Identifier) 244
BP (Bluetooth Power) 244
$S (SRP Salt) 244
$V, $W, $X, $Y commands (SRP Salt verifier) 245

Digi XBee® 3 Zigbee® RF Module 12

API configuration commmands 245
AP (API Enable) 245
AO (API Options) 246
AZ (Extended API Options) 246

UART interface commands 247
BD (UART Baud Rate) 247
NB (Parity) 248
SB (Stop Bits) 248
RO (Packetization Timeout) 249

AT Command options 249
CC (Command Character) 249
CT (Command Mode Timeout) 249
GT (Guard Times) 249
CN (Exit Commandmode) 250

UART pin configuration commands 250
D6 (DIO6/RTS) 250
D7 (DIO7/CTS) 250
P3 (DIO13/DOUT Configuration) 251
P4 (DIO14/DIN Configuration) 251

SMT/MMT SPI interface commands 252
P5 (DIO15/SPI_MISO Configuration) 252
P6 (DIO16/SPI_MOSI Configuration) 252
P7 (DIO17/SPI_SSEL Configuration) 253
P8 (DIO18/SPI_CLK Configuration) 253
P9 (DIO19/SPI_ATTN Configuration) 254

I/O settings commands 254
D0 (DIO0/AD0/Commissioning Button Configuration) 254
CB (Commissioning Pushbutton) 255
D1 (AD1/DIO1/TH_SPI_ATTN Configuration) 255
D2 (DIO2/AD2/TH_SPI_CLK Configuration) 256
D3 (DIO3/AD3/TH_SPI_SSEL Configuration) 256
D4 (DIO4/TH_SPI_MOSI Configuration) 257
D5 (DIO5/Associate Configuration) 257
D8 (DIO8/DTR/SLP_RQ) 257
D9 (DIO9/ON_SLEEP) 258
P0 (DIO10/RSSI Configuration) 258
P1 (DIO11 Configuration) 259
P2 (DIO12/TH_SPI_MISO Configuration) 259
PR (Pull-up/Down Resistor Enable) 260
PD (Pull Up/Down Direction) 261
M0 (PWM0 Duty Cycle) 261
M1 (PWM1 Duty Cycle) 262
RP (RSSI PWM Timer) 262
LT (Associate LED Blink Time) 262

I/O sampling commands 263
IR (I/O Sample Rate) 263
IC (Digital Change Detection) 263
AV (Analog Voltage Reference) 264
IS (Force Sample) 264
V+ (Supply Voltage Threshold) 264

Location commands 265
LX (Location X—Latitude) 265
LY (Location Y—Longitude) 265
LZ (Location Z—Elevation) 265

Diagnostic commands - firmware/hardware information 266

Digi XBee® 3 Zigbee® RF Module 13

VR (Firmware Version) 266
VL (Version Long) 266
VH (Bootloader Version) 266
HV (Hardware Version) 266
%C (Hardware/Software Compatibility) 267
R? (Power Variant) 267
%V (Voltage Supply Monitoring) 267
TP (Temperature) 267
CK (Configuration Checksum) 268
%P (Invoke Bootloader) 268

Memory access commands 268
FR (Software Reset) 268
AC (Apply Changes) 268
WR (Write) 269
RE (Restore Defaults) 269

Custom Default commands 269
%F (Set Custom Default) 269
!C (Clear Custom Defaults) 270
R1 (Restore Factory Defaults) 270

API Operation
API serial exchanges 272

AT commands 272
Transmit and Receive RF data 273
Remote AT commands 273
Source routing 273
Device Registration 274

API frame format 274
API operation (AP parameter = 1) 274
API operation with escaped characters (AP parameter = 2) 274

Send ZDO commands with the API 277
Example 279

Send Zigbee cluster library (ZCL) commands with the API 280
Example 283

Send Public Profile Commands with the API 285
Frame specific data 285
Example 288

Frame descriptions
Local AT Command Request - 0x08 292

Description 292
Format 292
Examples 292

Queue Local AT Command Request - 0x09 294
Description 294
Format 294
Examples 294

Transmit Request - 0x10 296
Description 296
Transmit options bit field 297
Examples 298

Explicit Addressing Command Request - 0x11 300

Digi XBee® 3 Zigbee® RF Module 14

Description 300
64-bit addressing 300
16-bit addressing 300
Zigbee-specific addressing information 300
Reserved endpoints 301
Reserved cluster IDs 301
Reserved profile IDs 301
Transmit options bit field 302
Examples 303

Remote AT Command Request - 0x17 306
Description 306
Format 306
Examples 307

Create Source Route - 0x21 309
Description 309
Format 309
Examples 310

Register Joining Device - 0x24 310
Description 311
Format 311
Examples 312

BLE Unlock Request - 0x2C 313
Description 313
Format 314
Phase tables 315
Examples 316

User Data Relay Input - 0x2D 316
Description 316
Use cases 317
Format 317
Error cases 317
Examples 318

Secure Session Control - 0x2E 318
Description 318
Format 318
Examples 320

Description 322
Format 322
Examples 323

Set local command parameter 323
Query local command parameter 323

Modem Status - 0x8A 324
Description 324
Format 324

Modem status codes 325
Examples 326

Extended Transmit Status - 0x8B 328
Description 328
Format 328
Delivery status codes 329
Examples 330

Transmit Status - 0x89 330
Description 331
Format 331
Delivery status codes 332

Digi XBee® 3 Zigbee® RF Module 15

Examples 333
Receive Packet - 0x90 334

Description 334
Format 334
Examples 335

Explicit Receive Indicator - 0x91 336
Description 336
Format 336
Examples 337

I/O Sample Indicator - 0x92 339
Description 339
Format 339
Examples 340

Node Identification Indicator - 0x95 342
Description 342
Format 342
Examples 344

Remote AT Command Response- 0x97 346
Description 346
Format 346
Examples 347

Extended Modem Status - 0x98 349
Description 349
Format 349
Secure Session status codes 349
Examples 350
Zigbee Verbose Join status codes 352

Route Record Indicator - 0xA1 359
Description 359
Format 359
Examples 360

Registration Status - 0xA4 361
Description 361
Format 361
Examples 361

Many-to-One Route Request Indicator - 0xA3 363
Description 363
Format 363
Examples 363

BLE Unlock Response - 0xAC 364
Description 364

User Data Relay Output - 0xAD 364
Description 364
Format 364
Error cases 365
Examples 365

Secure Session Response - 0xAE 365
Description 365
Format 366
Examples 366

OTA firmware/file system upgrades
Overview 369

Firmware over-the-air upgrades 369

Digi XBee® 3 Zigbee® RF Module 16

File system over-the-air upgrades 369
Scheduled upgrades 369
Create an OTA upgrade server 370

ZCL firmware upgrade cluster specification 370
Differences from the ZCL specification 370
OTA files 370
OTA upgrade process 372
OTA commands 373
Schedule an upgrade 389
Scheduled upgrades on sleeping devices 389
Considerations for older firmware versions 390
Does the download include the OTA header? 392

OTA file system upgrades
OTA file system update process 395
OTA file system updates using XCTU 395

Generate a public/private key pair 395
Set the public key on the XBee 3 device 396
Create the OTA file system image 397
Perform the OTA file system update 398

OTA file system updates: OEM 399
Generate a public/private key pair 400
Set the public key on the XBee 3 device 400
Create the OTA file system image 400
Perform the OTA file system update 401

Digi XBee® 3 Zigbee® RF Module

This manual describes the operation of the XBee 3 Zigbee RF Module, which consists of Zigbee
firmware loaded onto XBee 3 hardware.
The XBee 3 Zigbee RF Modules provide wireless connectivity to end-point devices in Zigbee mesh
networks. Using the Zigbee 3.0 feature set, these devices are inter-operable with other Zigbee
devices, including devices from other vendors. With theXBee 3 Zigbee RF Module, users can have their
Zigbee network up-and-running in a matter of minutes without configuration or additional
development.
For information about XBee 3 hardware, see the XBee 3 RF Module Hardware Reference Manual.

Applicable firmware and hardware 18
Change the firmware protocol 18
Regulatory information 18

Digi XBee® 3 Zigbee® RF Module 17

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Digi XBee® 3 Zigbee® RF Module Applicable firmware and hardware

Digi XBee® 3 Zigbee® RF Module 18

Applicable firmware and hardware
This manual supports the following firmware:

n v.10xx Zigbee

It supports the following hardware:

n XBee 3

Change the firmware protocol
You can switch the firmware loaded onto the XBee 3 hardware to run any of the following protocols:

n Zigbee
n 802.15.4
n DigiMesh

To change protocols, use the Update firmware feature in XCTU and select the firmware. See the
XCTU User Guide.

Regulatory information
See the Regulatory information section of the XBee 3 RF Module Hardware Reference Manual for the
XBee 3 hardware's regulatory and certification information.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
https://www.digi.com/resources/documentation/Digidocs/90001543/#containers/cont_certs.htm%3FTocPath%3DRegulatory%2520information|_____0
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Get started

Refer to the XBee Zigbee Mesh Kit User Guide for comprehensive instructions and examples on how to
get started with the XBee 3 Zigbee RF Module.

Digi XBee® 3 Zigbee® RF Module 19

https://www.digi.com/resources/documentation/Digidocs/90001942-13/Default.htm

Configure the XBee 3 Zigbee RF Module

Configure the device using XCTU 21
Custom defaults 21
Custom configuration: Create a new factory default 21
XBee bootloader 22
Send a firmware image 22
Software libraries 23
XBee Network Assistant 23
XBee Multi Programmer 24

Digi XBee® 3 Zigbee® RF Module 20

Configure the XBee 3 Zigbee RF Module Configure the device using XCTU

Digi XBee® 3 Zigbee® RF Module 21

Configure the device using XCTU
XBee Configuration and Test Utility (XCTU) is a multi-platform program that enables users to interact
with Digi radio frequency (RF) devices through a graphical interface. The application includes built-in
tools that make it easy to set up, configure, and test Digi RF devices.
For instructions on downloading and using XCTU, see the XCTU User Guide.

Custom defaults
Custom defaults allow you to preserve a subset of the device configuration parameters even after
returning to default settings using RE (Restore Defaults). This can be useful for settings that identify
the device—such as NI (Node Identifier)—or settings that could make remotely recovering the device
difficult if they were reset—such as ID (Extended PAN ID).

Note You must send these commands as local AT commands, they cannot be set using Remote AT
Command Request - 0x17.

Set custom defaults
Use %F (Set Custom Default) to set custom defaults. When the XBee 3 Zigbee RF Module receives %F
it takes the next command it receives and applies it to both the current configuration and the custom
defaults.
To set custom defaults for multiple commands, send a %F before each command.

Restore factory defaults
!C (Clear Custom Defaults) clears all custom defaults, so that RE (Restore Defaults) will restore the
device to factory defaults. Alternatively, R1 (Restore Factory Defaults) restores all parameters to
factory defaults without erasing their custom default values.

Limitations
There is a limitation on the number of custom defaults that can be set on a device. The number of
defaults that can be set depends on the size of the saved parameters and the devices' firmware
version. When there is no more room for custom defaults to be saved, any command sent immediately
after a %F returns an error.

Custom configuration: Create a new factory default
You can create a custom configuration that is used as a new factory default. This feature is useful if,
for example, you need to maintain certain settings for manufacturing or want to ensure a feature is
always enabled. When you use RE (Restore Defaults) to perform a factory reset on the device, the
custom configuration is set on the device after applying the original factory default settings.
For example, by default Bluetooth is disabled on devices. You can create a custom configuration in
which Bluetooth is enabled by default. When you use RE to reset the device to the factory defaults, the
Bluetooth configuration set to the custom configuration (enabled) rather than the original factory
default (disabled).
The custom configuration is stored in non-volatile memory. You can continue to create and save
custom configurations until the XBee 3 Zigbee RF Module's memory runs out of space. If there is no
space left to save a configuration, the device returns an error.
You can use !C (Clear Custom Defaults) to clear or overwrite a custom configuration at any time.

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

Configure the XBee 3 Zigbee RF Module XBee bootloader

Digi XBee® 3 Zigbee® RF Module 22

Set a custom configuration
1. Open XCTU and load your device.
2. Enter Commandmode.
3. Perform the following process for each configuration that you want to set as a factory default.

a. Send the Set Custom Default command, AT%F. This command enables you to enter a
custom configuration.

b. Send the custom configuration command. For example: ATBT 1. This command sets the
default for Bluetooth to enabled.

Clear all custom configuration on a device
After you have set configurations using %F (Set Custom Default), you can return all configurations to
the original factory defaults.

1. Open XCTU and load the device.
2. Enter Commandmode.
3. Send AT!C.

XBee bootloader
You can update firmware on the XBee 3 Zigbee RF Module serially. This is done by invoking the XBee 3
bootloader and transferring the firmware image using XMODEM.
This process is also used for updating a local device's firmware using XCTU.
XBee devices use a modified version of Silicon Labs' Gecko bootloader. This bootloader version
supports a custom entry mechanism that uses module pins DIN, DTR/SLEEP_RQ, and RTS.
To invoke the bootloader using hardware flow control lines, do the following:

1. Set DTR/SLEEP_RQ low (CMOS0V) and RTS high.
2. Send a serial break to the DIN pin and power cycle or reset the module.
3. When the device powers up, set DTR/SLEEP_RQ and DIN to low (CMOS0V) and RTS should be

high.
4. Terminate the serial break and send a carriage return at 115200 baud to the device.
5. If successful, the device sends the Silicon Labs' Gecko bootloader menu out the DOUT pin at

115200 baud.
6. You can send commands to the bootloader at 115200 baud.

Note Disable hardware flow control when entering and communicating with the bootloader.

All serial communications with the module use 8 data bits, no parity bit, and 1 stop bit.
You can also invoke the bootloader from the XBee application by sending %P (Invoke Bootloader).

Send a firmware image
After invoking the bootloader, a menu is sent out the UART at 115200 baud. To upload a firmware
image through the UART interface:

Configure the XBee 3 Zigbee RF Module Software libraries

Digi XBee® 3 Zigbee® RF Module 23

1. Look for the bootloader prompt BL > to ensure the bootloader is active.
2. Send an ASCII 1 character to initiate a firmware update.
3. After sending a 1, the device waits for an XModem CRC upload of a .gbl image over the serial

line at 115200 baud. Send the .gbl file to the device using standard XMODEM-CRC.

If the firmware image is successfully loaded, the bootloader outputs a “complete” string. Invoke the
newly loaded firmware by sending a 2 to the device.
If the firmware image is not successfully loaded, the bootloader outputs an "aborted string". It return
to the main bootloader menu. Some causes for failure are:

n Over 1 minute passes after the command to send the firmware image and the first block of the
image has not yet been sent.

n A power cycle or reset event occurs during the firmware load.
n A file error or a flash error occurs during the firmware load. The following table contains errors

that could occur during the XMODEM transfer.

Error Cause Workaround

0x18 This error is observed when a serial upload attempt
has been abruptly discontinued by invoking Ctrl+C
and subsequently another attempt is made to
upload a gbl by pressing 1 on the bootloader menu.

Press 2 on the bootloader menu. The
bootloader performs a reboot and
the menu gets displayed again. Now
press 1 and begin uploading the gbl.

Software libraries
One way to communicate with the XBee 3 Zigbee RF Module is by using a software library. The
libraries available for use with the XBee 3 Zigbee RF Module include:

n XBee Java library
n XBee Python library

The XBee Java Library is a Java API. The package includes the XBee library, its source code and a
collection of samples that help you develop Java applications to communicate with your XBee devices.
The XBee Python Library is a Python API that dramatically reduces the time to market of XBee
projects developed in Python and facilitates the development of these types of applications, making it
an easy process.

XBee Network Assistant
The XBee Network Assistant is an application designed to inspect andmanage RF networks created
by Digi XBee devices. Features include:

n Join and inspect any nearby XBee network to get detailed information about all the nodes it
contains.

n Update the configuration of all the nodes of the network, specific groups, or single devices
based on configuration profiles.

n Geo-locate your network devices or place them in custommaps and get information about the
connections between them.

http://www.digi.com/resources/documentation/digidocs/90001438/Default.htm
http://xbplib.readthedocs.io/en/latest/

Configure the XBee 3 Zigbee RF Module XBee Multi Programmer

Digi XBee® 3 Zigbee® RF Module 24

n Export the network you are inspecting and import it later to continue working or work offline.
n Use automatic application updates to keep you up to date with the latest version of the tool.

See the XBee Network Assistant User Guide for more information.
To install the XBee Network Assistant:

1. Navigate to digi.com/xbeenetworkassistant.
2. Click General Diagnostics, Utilities and MIBs.
3. Click the XBee Network Assistant - Windows x86 link.
4. When the file finishes downloading, run the executable file and follow the steps in the XBee

Network Assistant Setup Wizard.

XBee Multi Programmer
The XBee Multi Programmer is a combination of hardware and software that enables partners and
distributors to program multiple Digi Radio frequency (RF) devices simultaneously. It provides a fast
and easy way to prepare devices for distribution or large networks deployment.
The XBee Multi Programmer board is an enclosed hardware component that allows you to program up
to six RF modules thanks to its six external XBee sockets. The XBee Multi Programmer application
communicates with the boards and allows you to set up and execute programming sessions. Some of
the features include:

n Each XBee Multi Programmer board allows you to program up to six devices simultaneously.
Connect more boards to increase the programming concurrency.

n Different board variants cover all the XBee form factors to program almost any Digi RF device.

Download the XBee Multi Programmer application from: digi.com/support/productdetail?pid=5641
See the XBee Multi Programmer User Guide for more information.

https://www.digi.com/resources/documentation/digidocs/90002288/Default.htm
https://www.digi.com/support/productdetail?pid=5642
https://www.digi.com/support/productdetail?pid=5641
https://www.digi.com/resources/documentation/digidocs/90002263/default.htm

Update the firmware over-the-air

The XBee 3 Zigbee RF Module supports firmware over-the-air (FOTA) updates. To perform an FOTA
update, the device to be updatedmust be associated and communicable with a Zigbee network. In
this section, the node performing the update is considered the server and the node being updated is
the client.
Use XCTU to perform the FOTA update using the following process:

Add the device to XCTU 26
Update to the latest firmware 26

Digi XBee® 3 Zigbee® RF Module 25

Update the firmware over-the-air Add the device to XCTU

Digi XBee® 3 Zigbee® RF Module 26

Add the device to XCTU
You must have a local device connected to your computer in order to perform firmware updates,
either to update local firmware through the serial connection or to use the local device to remotely
upgrade another device in the same network. With a local device properly attached to your computer,
follow these steps:

1. Add the local device attached to your computer to XCTU so it displays in the radio modules list.
2. Add the remote module in the network to XCTU:

a. Configure the local module you added to work in API mode.
b. Click Discover radio nodes in the same network to start a search for the remote device.
c. When a remote device is found, it is listed in the Discovering remote devices dialog.
d. Select the device and click Add selected devices. The remote device is added to the radio

modules list as a subordinate to the local device.

Update to the latest firmware
Firmware is the program code stored in the device's persistent memory that provides the control
program for the device. Use XCTU to update the firmware.

1. Click the Configuration working modes button .
2. Select a local or remote XBee module from the Radio Modules list.

3. Click the Update firmware button .
The Update firmware dialog displays the available and compatible firmware for the selected
XBee module.

4. Select the product family of the XBee module, the function set, and the latest firmware version.

Note XBee 3 Zigbee 3.0 does not support forced upgrades to the same version of the firmware.

5. Click Update. A dialog displays update progress. Click Show details for details of the firmware
update process.

Note Once you add your device to the radio modules list in XCTU, the update process is exactly the
same whether it is a local or remote device.

Note If there are instances where the upgrade fails with a transmission/waiting for image block
request error, retry the update process.

See How to update the firmware of your modules in the XCTU User Guide for more information.
For information about performing a firmware over-the-air (FOTA) update outside of XCTU, see In-
depth OTA firmware upgrade process for Zigbee 3.0.

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Get started with MicroPython

This user guide provides an overview of how to use MicroPython with the XBee 3 Zigbee RF Module.
For in-depth information andmore complex code examples, refer to the Digi MicroPython
Programming Guide. Continue with this user guide for simple examples to get started using
MicroPython on the XBee 3 Zigbee RF Module.

About MicroPython 28
MicroPython on the XBee 3 Zigbee RF Module 28
Use XCTU to enter the MicroPython environment 28
Use the MicroPython Terminal in XCTU 29
MicroPython examples 29
MicroPython networking and communication examples 31
Exit MicroPython mode 39
Other terminal programs 39
Use picocom in Linux 40
Micropython help () 41

Digi XBee® 3 Zigbee® RF Module 27

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Get started with MicroPython About MicroPython

Digi XBee® 3 Zigbee® RF Module 28

About MicroPython
MicroPython is an open-source programming language based on Python 3.0, with much of the same
syntax and functionality, but modified to fit on small devices with limited hardware resources, such as
an XBee 3 Zigbee RF Module.
For more information about MicroPython, see www.micropython.org.
For more information about Python, see www.python.org.

MicroPython on the XBee 3 Zigbee RF Module
The XBee 3 Zigbee RF Module has MicroPython running on the device itself. You can access a
MicroPython prompt from the XBee 3 Zigbee RF Module when you install it in an appropriate
development board (XBDB or XBIB), and connect it to a computer via a USB cable.

Note MicroPython is only available through the UART interface and does not work with SPI.

Note MicroPython programming on the device requires firmware version or newer.

The examples in this user guide assume:

n You have XCTU on your computer. See Configure the device using XCTU.
n You have a serial terminal program installed on your computer. For more information, see Use

the MicroPython Terminal in XCTU. This requires XCTU 6.3.10 or higher.
n You have an XBee 3 Zigbee RF Module installed on an appropriate development board such as

an XBIB-U-DEV or an XBDB-U-ZB.

n The XBee 3 Zigbee RF Module is connected to the computer via a USB cable and XCTU
recognizes it.

Use XCTU to enter the MicroPython environment
To use the XBee 3 Zigbee RF Module in the MicroPython environment:

1. Use XCTU to add the device(s); see Configure the device using XCTU and Add devices to XCTU.
2. The XBee 3 Zigbee RF Module appears as a box in the Radio Modules information panel. Each

module displays identifying information about itself.
3. Click this box to select the device and load its current settings.

Note To ensure that MicroPython is responsive to input, Digi recommends setting the XBee
UART baud rate to 115200 baud. To set the UART baud rate, select 115200 [7] in the BD field
and click the Write button. We strongly recommend using hardware flow control to avoid data
loss, especially when pasting large amounts of code or text. For more information, see UART
flow control.

4. To put the XBee 3 Zigbee RF Module into MicroPython mode, in the AP field select MicroPython

REPL [4] and click the Write button .
5. Note which COM port the XBee 3 Zigbee RF Module is using, because you will need this

information when you use the MicroPython terminal.

https://micropython.org/
https://www.python.org/
https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_populate_device_list.htm

Get started with MicroPython Use the MicroPython Terminal in XCTU

Digi XBee® 3 Zigbee® RF Module 29

Use the MicroPython Terminal in XCTU
You can use the MicroPython Terminal to communicate with the XBee 3 Zigbee RF Module when it is in
MicroPython mode.1 This requires XCTU 6.3.10 or higher. To enter MicroPython mode, follow the steps
in Use XCTU to enter the MicroPython environment. To use the MicroPython Terminal:

1. Click the Tools drop-downmenu and select MicroPython Terminal. The terminal window
opens.

2. Click Open to open the Serial Port Configuration window.
3. In the Select the Serial/USB port area, click the COM port that the device uses.
4. Verify that the baud rate and other settings are correct.

5. Click OK. The Open icon changes to Close , indicating that the device is properly connected.

If the >>> prompt appears, you are connected properly. You can now type or paste MicroPython code
in the terminal.

MicroPython examples
This section provides examples of how to use some of the basic functionality of MicroPython with the
XBee 3 Zigbee RF Module.

Example: hello world
1. At the MicroPython >>> prompt, type the Python command: print("Hello, World!")

2. Press Enter to execute the command. The terminal echos back Hello, World!

Example: enter MicroPython paste mode
In the following examples it is helpful to know that MicroPython supports paste mode, where you can
copy a large block of code from this user guide and paste it instead of typing it character by character.
To use paste mode:

1. Copy the code you want to run. For example, copy the following code that is the code from the
"Hello world" example:

print("Hello World")

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

2. In the terminal, at the MicroPython >>> prompt type Ctrl-+E to enter paste mode. The terminal
displays paste mode; Ctrl-C to cancel, Ctrl-D to finish.

3. Right-click in the MicroPython terminal window and click Paste or press Ctrl+Shift+V to paste.
4. The code appears in the terminal occupying one line. Each line starts with its line number and

three "=" symbols. For example, line 1 starts with 1===.

1See Other terminal programs if you do not use the MicroPython Terminal in XCTU.

http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython MicroPython examples

Digi XBee® 3 Zigbee® RF Module 30

5. If the code is correct, press Ctrl+D to run the code; “Hello World” should print.

Note If you want to exit paste mode without running the code, or if the code did not copy
correctly, press Ctrl+C to cancel and return to the normal MicroPython >>> prompt).

Example: use the time module
The time module is used for time-sensitive operations such as introducing a delay in your routine or a
timer.
The following time functions are supported by the XBee 3 Zigbee RF Module:

n ticks_ms() returns the current millisecond counter value. This counter rolls over at
0x40000000.

n ticks_diff() compares the difference between two timestamps in milliseconds.
n sleep() delays operation for a set number of seconds.
n sleep_ms() delays operation for a set number of milliseconds.
n sleep_us() delays operation for a set number of microseconds.

Note The standard time.time() function cannot be used, because this function produces the number
of seconds since the epoch. The XBee3 module lacks a realtime clock and cannot provide any date or
time data.

The following example exercises the various sleep functions and uses ticks_diff() to measure
duration:

import time

start = time.ticks_ms() # Get the value from the millisecond counter

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(1000) # sleep for 1000 microseconds

delta = time.ticks_diff(time.ticks_ms(), start)

print("Operation took {} ms to execute".format(delta))

Example: AT commands using MicroPython
AT commands control the XBee 3 Zigbee RF Module. The "AT" is an abbreviation for "attention", and
the prefix "AT" notifies the module about the start of a command line. For a list of AT commands that
can be used on the XBee 3 Zigbee RF Module, see AT commands.
MicroPython provides an atcmd() method to process AT commands, similar to how you can use
Commandmode or API frames.
The atcmd() method accepts two parameters:

1. The two character AT command, entered as a string.
2. An optional second parameter used to set the AT command value. If this parameter is not

provided, the AT command is queried instead of being set. This value is an integer, bytes object,
or string, depending on the AT command.

Get started with MicroPython MicroPython networking and communication examples

Digi XBee® 3 Zigbee® RF Module 31

Note The xbee.atcmd() method does not support the following AT commands: IS, AS, ED, ND, or DN.

The following is example code that queries and sets a variety of AT commands using xbee.atcmd():

import xbee

Set the NI string of the radio
xbee.atcmd("NI", "XBee3 module")

Configure a destination address using two different data types
xbee.atcmd("DH", 0x0013A200) # Hex
xbee.atcmd("DL", b'\x12\x25\x89\xF5') # Bytes

Read some AT commands and display the value and data type:
print("\nAT command parameter values:")
commands =["DH", "DL", "NI", "CK"]
for cmd in commands:

val = xbee.atcmd(cmd)
print("{}: {:20} of type {}".format(cmd, repr(val), type(val)))

This example code outputs the following:

AT command parameter values:
DH: b'\x00\x13\xa2\x00' of type <class 'bytes'>
DL: b'\x12%\x89\xf5' of type <class 'bytes'>
NI: 'XBee3 module' of type <class 'str'>
CK: 65535 of type <class 'int'>

Note Parameters that store values larger than 16-bits in length are represented as bytes. Python
attempts to print out ASCII characters whenever possible, which can result in some unexpected
output (such as the "%" in the above output). If you want the output from MicroPython to match
XCTU, you can use the following example to convert bytes to hex:

dl_value = xbee.atcmd("DL")
hex_dl_value = hex(int.from_bytes(dl_value, 'big'))

MicroPython networking and communication examples
This section provides networking and communication examples for using MicroPython with the XBee 3
Zigbee RF Module.

Zigbee networks with MicroPython
For small networks, it is suitable to use MicroPython on every node. However, there are some inherit
limitations that may prevent you from using MicroPython on some heavily trafficked nodes:

n When running MicroPython, any receivedmessages will be stored in a small receive queue. This
queue only has room for 4 packets andmust be regularly read to prevent data loss. For
networks that will be generating a lot of traffic, the data aggregator may need to operate in
API mode in order to capture all incoming data.

n MicroPython does not have support for all of the XBee API frame types, particularly for source
routing. If you are planning to operate with a network of more than 40 nodes, Digi highly
recommends that you operate with the aggregator in API mode and implement source routing.

Get started with MicroPython MicroPython networking and communication examples

Digi XBee® 3 Zigbee® RF Module 32

For the examples in this section, we use MicroPython to manage a Zigbee network and send and
receive data between modules. To follow the upcoming examples, we need to configure a second
XBee 3 Zigbee RF Module to use MicroPython.
XCTU only allows a single MicroPython terminal. We will be running example code on both modules,
which requires a second terminal window.
Open a second instance of XCTU, and configure a different XBee 3 device for MicroPython following
the steps in Use XCTU to enter the MicroPython environment.

WARNING! The upcoming examples form and join an unencrypted Zigbee network. If the
modules were previously associated with a network, they will be disassociated.

Example: forming and joining a Zigbee network using MicroPython
This example forms a two-node Zigbee network using MicroPython. This is a prerequisite for
subsequent networking examples.
This example assumes that you have two XBee 3 Zigbee RF Modules configured for MicroPython and
two terminals open, one for each radio.
Execute the following code on the first radio; it will be our network coordinator:

import xbee, time
Set the identifying string of the radio
xbee.atcmd("NI", "Coordinator")

Configure some basic network settings
network_settings = {"CE": 1, "ID": 0xABCD, "EE": 0, "NJ": 0xFF}

for command, value in network_settings.items():
xbee.atcmd(command, value)

xbee.atcmd("AC") # Apply changes
time.sleep(1)

while xbee.atcmd("AI") != 0:
time.sleep(0.1)

print("Network Established")

operating_network = ["OI", "OP", "CH"]
print("Operating network parameters:")
for cmd in operating_network:

print("{}: {}".format(cmd, xbee.atcmd(cmd)))

Run the following code on the second radio, it will be a router that will join the established network:

import xbee, time

Set the identifying string of the radio
xbee.atcmd("NI", "Router")

Configure some basic network settings
network_settings = {"CE": 0, "ID": 0xABCD, "EE": 0}

for command, value in network_settings.items():
xbee.atcmd(command, value)

xbee.atcmd("AC") # Apply changes
time.sleep(1)

Get started with MicroPython MicroPython networking and communication examples

Digi XBee® 3 Zigbee® RF Module 33

Query AI until it reports success

print("Connecting to network, please wait...")
while xbee.atcmd("AI") != 0:

time.sleep(0.1)
print("Connected to Network")

operating_network = ["OI", "OP", "CH"]
print("Operating network parameters:")
for cmd in operating_network:

print("{}: {}".format(cmd, xbee.atcmd(cmd)))

After the code has been executed on both radios, the radio reports the operating network
parameters. Make sure both radios report the same values to ensure they are on the same network.

Example: network Discovery using MicroPython
The xbee.discover() method returns an iterator that blocks while waiting for results, similar to
executing an ND request. For more information, see ND (Network Discovery).
Each result is a dictionary with fields based on an ND response:

n sender_nwk: 16-bit network address.
n sender_eui64: 8-byte bytes object with EUI-64 address.
n parent_nwk: Set to 0xFFFE on the coordinator and routers; otherwise, this is set to the

network address of the end device's parent.
n node_id: The device's NI value (a string of up to 20 characters, also referred to as Node

Identification).
n node_type: Value of 0, 1 or 2 for coordinator, router, or end device.
n device_type: The device's 32-bit DD value, also referred to as Digi Device Type; this is used to

identify different types of devices or hardware.
n rssi: Relative signal strength indicator (in dBm) of the node discovery request packet received

by the sending node.

Note When printing the dictionary, fields for device_type, sender_nwk and parent_nwk appear in
decimal form. You can use the MicroPython hex() method to print an integer in hexadecimal. Check
the function code for format_eui64 from the Example: communication between two XBee 3 Zigbee
modules topic for code to convert the sender_eui64 field into a hexadecimal string with a colon
between each byte value.

Use the following example code to perform a network discovery:

import xbee, time

Set the network discovery options to include self
xbee.atcmd("NO", 2)
xbee.atcmd("AC")
time.sleep(.5)

Perform Network Discovery and print out the results
print ("Network Discovery in process...")
nodes = list(xbee.discover())
if nodes:

Get started with MicroPython MicroPython networking and communication examples

Digi XBee® 3 Zigbee® RF Module 34

for node in nodes:
print("\nRadio discovered:")
for key, value in node.items():

print("\t{:<12} : {}".format(key, value))

Set NO back to the default value
xbee.atcmd("NO", 0)
xbee.atcmd("AC")

This produces the following output from two discovered nodes:

Radio discovered:
rssi : -63
node_id : Coordinator
device_type : 1179648
parent_nwk : 65534
sender_nwk : 0
sender_eui64 : b'\x00\x13\xa2\xff h\x98T'
node_type : 0

Radio discovered:
rssi : -75
node_id : Router
device_type : 1179648
parent_nwk : 65534
sender_nwk : 23125
sender_eui64 : b'\x00\x13\xa2\xffh\x98c&'
node_type : 1

Examples: transmitting data
This section provides examples for transmitting data using MicroPython. These examples assume you
have followed the above examples and the two radios are on the same network.

Example: transmit message
Use the xbee module to transmit a message from the XBee 3 Zigbee device. The transmit() function
call consists of the following parameters:

1. The Destination Address, which can be any of the following:
n Integer for 16-bit addressing
n 8-byte bytes object for 64-bit addressing
n Constant xbee.ADDR_BROADCAST to indicate a broadcast destination
n Constant xbee.ADDR_COORDINATOR to indicate the coordinator

2. The Message as a character string.

If the message is sent successfully, transmit() returns None. If the transmission fails due to an ACK
failure or lack of free buffer space on the receiver, the sent packet will be silently discarded.

Example: transmit a message to the network coordinator

1. From the router, access the MicroPython environment.
2. At the MicroPython >>> prompt, type import xbee and press Enter.

Get started with MicroPython MicroPython networking and communication examples

Digi XBee® 3 Zigbee® RF Module 35

3. At the MicroPython >>> prompt, type xbee.transmit(xbee.ADDR_COORDINATOR, "Hello
World!") and press Enter.

4. On the coordinator, you can issue an xbee.receive() call to output the received packet.

Example: transmit custom messages to all nodes in a network
This program performs a network discovery and sends the message 'Hello <Destination Node
Identifier>!' to individual nodes in the network. For more information, see Example: network
Discovery using MicroPython.

import xbee

Perform a network discovery to gather destination address:
print("Discovering remote nodes, please wait...")
node_list = list(xbee.discover())
if not node_list:

raise Exception("Network discovery did not find any remote devices")

for node in node_list:
dest_addr = node['sender_nwk'] # 'sender_eui64' can also be used
dest_node_id = node['node_id']
payload_data = "Hello, " + dest_node_id + "!"

try:
print("Sending \"{}\" to {}".format(payload_data, hex(dest_addr)))
xbee.transmit(dest_addr, payload_data)

except Exception as err:
print(err)

print("complete")

Receiving data
Use the receive() function from the xbee module to receive messages. When MicroPython is active on
a device (AP is set to 4), all incoming messages are saved to a receive queue within MicroPython. This
receive queue is limited in size and only has room for 4 messages. To ensure that data is not lost, it is
important to continuously iterate through the receive queue and process any of the packets within.
If the receive queue is full and another message is sent to the device, it will not acknowledge the
packet and the sender generates a failure status of 0x24 (Address not found).
The receive() function returns one of the following:

n None: No message (the receive queue is empty).
n Message dictionary consisting of:

l sender_eui64: 64-bit address (as a "bytes object") of the sending node.
l source_ep: source endpoint as an integer.
l dest_ep: destination endpoint as an integer.
l cluster: cluster id as an integer.
l profile: profile id as an integer.
l broadcast: True or False depending on whether the frame was broadcast or unicast.
l payload: "Bytes object" of the payload. This is a bytes object instead of a string, because

the payload can contain binary data.

Get started with MicroPython MicroPython networking and communication examples

Digi XBee® 3 Zigbee® RF Module 36

Example: continuously receive data
In this example, the format_packet() helper formats the contents of the dictionary and format_eui64
() formats the bytes object holding the EUI-64. The while loop shows how to poll for packets
continually to ensure that the receive buffer does not become full.

def format_eui64(addr):
return ':'.join('%02x' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast'] else 'Unicast'
print("%s message from EUI-64 %s (network 0x%04X)" % (type,

format_eui64(p['sender_eui64']), p['sender_nwk']))
print(" from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep'], p['dest_ep'], p['cluster'], p['profile']))
print(p['payload'])

import xbee, time
while True:

print("Receiving data...")
print("Press CTRL+C to cancel.")
p = xbee.receive()
if p:

format_packet(p)
else:

time.sleep(0.25) # wait 0.25 seconds before checking again

If this node had previously received a packet, it outputs as follows:

Unicast message from EUI-64 00:13:a2:00:41:74:ca:70 (network 0x6D81)
from EP 0xE8 to EP 0xE8, Cluster 0x0011, Profile 0xC105:

b'Hello World!'

Note Digi recommends calling the receive() function in a loop so no data is lost. On modules where
there is a high volume of network traffic, there could be data lost if the messages are not pulled from
the queue fast enough.

Example: communication between two XBee 3 Zigbee modules
This example combines all of the previous examples and represents a full application that configures a
network, discovers remote nodes, and sends and receives messages.
First, we will upload some utility functions into the flash space of MicroPython so that the following
examples will be easier to read.
Complete the following steps to compile and execute utility functions using flash mode on both
devices:

1. Access the MicroPython environment.
2. Press Ctrl + F.
3. Copy the following code:

import xbee, time
Utility functions to perform XBee 3 Zigbee operations
def format_eui64(addr):

return ':'.join('%02x' % b for b in addr)

Get started with MicroPython MicroPython networking and communication examples

Digi XBee® 3 Zigbee® RF Module 37

def format_packet(p):
type = 'Broadcast' if p['broadcast'] else 'Unicast'
print("%s message from EUI-64 %s (network 0x%04X)" %

(type, format_eui64(p['sender_eui64']), p['sender_nwk']))
print("from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep'], p['dest_ep'], p['cluster'], p['profile']))
print(p['payload'],"\n")

def network_status():
If the value of AI is non zero, the module is not connected to a network
return xbee.atcmd("AI")

4. At the MicroPython 1^^^ prompt, right-click and select the Paste option.
5. Press Ctrl+D to finish. The code is uploaded to the flash memory and then compiled. At the

"Automatically run this code at startup" [Y/N]?" prompt, select Y.
6. Press Ctrl+R to run the compiled code; this provides access to these utility functions for the

next examples.

WARNING! MicroPython code stored in flash is saved in the file system as main.py. If the
file system has not been formatted, then the following error is generated:
OSError: [Errno 7019] ENODEV
The file system can be formatted in one of three ways:
In XCTU by using the File System Manager.
In Commandmode using the ATFS FORMAT confirm command—see FS (File System).
In MicroPython by issuing the following code:

import os
os.format()

Example code on the coordinator module
The following example code forms a Zigbee network as a coordinator, performs a network discovery
to find the remote node, and continuously prints out any incoming data.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Forming a new Zigbee network as a coordinator...")
xbee.atcmd("NI", "Coordinator")
network_settings = {"CE": 1, "ID": 0x3332, "EE": 0, "NJ": 0xFF}
for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

while network_status() != 0:
time.sleep(0.1)

print("Network Established\n")

print("Waiting for a remote node to join...")
node_list = []
while len(node_list) == 0:

Perform a network discovery until the router joins

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_interact_with_xbee_file_system.htm

Get started with MicroPython MicroPython networking and communication examples

Digi XBee® 3 Zigbee® RF Module 38

node_list = list(xbee.discover())
print("Remote node found, transmitting data")

for node in node_list:
dest_addr = node['sender_nwk'] # using 16 bit addressing
dest_node_id = node['node_id']
payload_data = "Hello, " + dest_node_id + "!"

print("Sending \"{}\" to {}".format(payload_data, hex(dest_addr)))
xbee.transmit(dest_addr, payload_data)

Start the receive loop
print("Receiving data...")
print("Hit CTRL+C to cancel")
while True:

p = xbee.receive()
if p:

format_packet(p)
else:

time.sleep(0.25)

3. Press Ctrl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once you paste the

code, it executes immediately.

Example code on the router module
The following example code joins the Zigbee network from the previous example, and continuously
prints out any incoming data. This device also sends its temperature data every 5 seconds to the
coordinator address.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Joining network as a router...")
xbee.atcmd("NI", "Router")
network_settings = {"CE": 0, "ID": 0x3332, "EE": 0}
for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

while network_status() != 0:
time.sleep(0.1)

print("Connected to Network\n")

last_sent = time.ticks_ms()
interval = 5000 # How often to send a message

Start the transmit/receive loop
print("Sending temp data every {} seconds".format(interval/1000))
while True:

p = xbee.receive()
if p:

format_packet(p)
else:

Transmit temperature if ready

Get started with MicroPython Exit MicroPython mode

Digi XBee® 3 Zigbee® RF Module 39

if time.ticks_diff(time.ticks_ms(), last_sent) > interval:
temp = "Temperature: {}C".format(xbee.atcmd("TP"))
print("\tsending " + temp)
try:

xbee.transmit(xbee.ADDR_COORDINATOR, temp)
except Exception as err:

print(err)
last_sent = time.ticks_ms()

time.sleep(0.25)

3. Press Ctrl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once you paste the

code, it executes immediately.

Exit MicroPython mode
To exit MicroPython mode:

1. In the XCTU MicroPython terminal, click the green Close button .
2. Click Close at the bottom of the terminal to exit the terminal.

3. In XCTU's Configuration working mode , change AP API Enable to another mode and click

the Write button . We recommend changing to Transparent mode [0], as most of the
examples use this mode.

Other terminal programs
If you do not use the MicroPython terminal in XCTU, you can use other terminal programs to
communicate with the XBee 3 Zigbee RF Module. If you use Microsoft Windows, follow the instructions
for Tera Term; if you use Linux, follow the instructions for picocom. To download these programs:

n Tera Term for Windows, see ttssh2.osdn.jp/index.html.en.
n Picocom for Linux, see developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
n Source code and in-depth information, see github.com/npat-efault/picocom.

Tera Term for Windows
With the XBee 3 Zigbee RF Module in MicroPython mode (AP = 4), you can access the MicroPython
prompt using a terminal.

1. Open Tera Term. The Tera Term: New connection window appears.
2. Click the Serial radio button to select a serial connection.
3. From the Port: drop-downmenu, select the COM port that the XBee 3 Zigbee RF Module is

connected to.
4. Click OK. The COMxx - Tera Term VT terminal window appears and Tera Term attempts to

connect to the device at a baud rate of 9600 bps. The terminal will not allow communication
with the device since the baud rate setting is incorrect. You must change this rate as it was
previously set to 115200 bps.

5. Click Setup and Serial Port. The Tera Term: Serial port setup window appears.

https://ttssh2.osdn.jp/index.html.en
https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
https://github.com/npat-efault/picocom

Get started with MicroPython Use picocom in Linux

Digi XBee® 3 Zigbee® RF Module 40

6. In the Tera Term: Serial port setup window, set the parameters to the following values:
n Port: Shows the port that the XBee 3 Zigbee RF Module is connected on.
n Baud rate: 115200
n Data: 8 bit
n Parity: none
n Stop: 1 bit
n Flow control: hardware
n Transmit delay: N/A

7. Click OK to apply the changes to the serial port settings. The settings should go into effect
right away.

8. To verify that local echo is not enabled and that extra line-feeds are not enabled:
a. In Tera Term, click Setup and select Terminal.
b. In the New-line area of the Tera Term: Serial port setup window, click the Receive drop-

downmenu and select AUTO if it does not already show that value.
c. Make sure the Local echo box is not checked.

9. Click OK.
10. Press Ctrl+B to get the MicroPython version banner and prompt.

MicroPython v1.9.3-716-g507d0512 on 2018-02-20; XBee3 Zigbee with EFR32MG
Type "help()" for more information.
>>>

Now you can type MicroPython commands at the >>> prompt.

Use picocom in Linux
With the XBee 3 Zigbee RF Module in MicroPython mode (AP = 4), you can access the MicroPython
prompt using a terminal.

Note The user must have read and write permission for the serial port the XBee 3 Zigbee RF Module is
connected to in order to communicate with the device.

1. Open a terminal in Linux and type picocom -b 115200 /dev/ttyUSB0. This assumes you have
no other USB-to-serial devices attached to the system.

Get started with MicroPython Micropython help ()

Digi XBee® 3 Zigbee® RF Module 41

2. Press Ctrl+B to get the MicroPython version banner and prompt. You can also press Enter to
bring up the prompt.

If you do have other USB-to-serial devices attached:

1. Before attaching the XBee 3 Zigbee RF Module, check the directory /dev/ for any devices
named ttyUSBx, where x is a number. An easy way to list these is to type: ls /dev/ttyUSB*.
This produces a list of any device with a name that starts with ttyUSB.

2. Take note of the devices present with that name, and then connect the XBee 3 Zigbee RF
Module.

3. Check the directory again and you should see one additional device, which is the XBee 3 Zigbee
RF Module.

4. In this case, replace /dev/ttyUSB0 at the top with /dev/ttyUSB<number>, where <number>
is the new number that appeared.

It connects and shows "Terminal ready".

You can now type MicroPython commands at the >>> prompt.

Micropython help ()
When you type the help() command at the prompt, it provides a link to online help, control commands
and also usage examples.

>>> help()
Welcome to MicroPython!
For online docs please visit http://docs.micropython.org/.

Get started with MicroPython Micropython help ()

Digi XBee® 3 Zigbee® RF Module 42

Control commands:
CTRL-A -- on a blank line, enter raw REPL mode
CTRL-B -- on a blank line, enter normal REPL mode
CTRL-C -- interrupt a running program
CTRL-D -- on a blank line, reset the REPL
CTRL-E -- on a blank line, enter paste mode
CTRL-F -- on a blank line, enter flash upload mode
For further help on a specific object, type help(obj)
For a list of available modules, type help('modules')

--

When you type help('modules') at the prompt, it displays all available Micropython modules.

--
>>> help('modules')
__main__ io time uos
array json ubinascii ustruct
binascii machine uerrno utime
builtins micropython uhashlib xbee
errno os uio
gc struct ujson
hashlib sys umachine

Plus any modules on the filesystem

--

When you import a module and type help() with the module as the object, you can query all the
functions that the object supports.

--
>>> import sys
>>> help(sys)
object <module 'sys'> is of type module
__name__ -- sys
path -- ['', '/flash', '/flash/lib']
argv -- ['']
version -- 3.4.0
version_info -- (3, 4, 0)
implementation -- ('micropython', (1, 10, 0))
platform -- xbee3-Zigbee
byteorder -- little
maxsize -- 2147483647
exit -- <function>
stdin -- <io.FileIO 0>
stdout -- <io.FileIO 1>
stderr -- <io.FileIO 2>
modules -- {}
print_exception -- <function>

Secure access

By default, the XBee 3 Zigbee RF Module is easy to configure and allows for rapid prototyping. For
deployment, you can encrypt networks to prevent unauthorized access. This can prevent entities
outside of the network from accessing data on that network. Some customers may also desire a way
to restrict communication between nodes from inside the same network.
There are three ways to secure your device against unauthorized access:

n Secure remote session
n Disable functionality

Secure session protects against external man-in-the middle attacks by requiring remote devices to
authenticate before they are allowed to make configuration changes.
You can also disable device functionality in order to prevent unexpectedmalicious use of the product.
for example disable MicroPython so that remote code cannot be uploaded and executed.

Secure Sessions 44
Secured remote AT commands 45
Send data to a secured remote node 47
End a session from a server 47
Secure Session API frames 48
Secure transmission failures 48

Digi XBee® 3 Zigbee® RF Module 43

Secure access Secure Sessions

Digi XBee® 3 Zigbee® RF Module 44

Secure Sessions
Secure Sessions provide a way to password-protect communication between two nodes on a network
above and beyond the security of the network itself. With secure sessions, a device can 'log in', or
create a session with another device that is encrypted and only readable by the two nodes involved.
By restricting certain actions—such as remote AT commands or FOTA updates—to only be allowed
over one of these secure sessions, you can make it so access to the network does not allow network
configuration. A passwordmust be set and the proper bits of SA (Secure Access) must be set to enable
this feature.
The following definitions relate to secure Sessions:

Term Definition

Client The device that is attempting to log in and send secured data or commands is
called the client.

Server The device that is being logged into and will receive secured data or commands
is called the server.

Secure Session A secure connection between a server and a client where the pair can send and
receive encrypted data that only they can decrypt.

Secure Remote
Password (SRP)

Name of the authentication protocol used to create the secure connection
between the nodes.

Salt A random value generated as part of the authentication process.

Verifier A value derived from a given salt and password.

Configure the secure session password for a device
For a device to act as a secure session server it needs to have a password configured. The password is
configured on the server in the form of a salt and verifier used for the SRP authentication process. The
salt and verifier can be configured in XCTU by selecting the Secure Session Authentication option.
We recommend using XCTU to set a password which will then generate the salt and verifier
parameters, although the salt and verifier values can also be set manually. See *S (Secure Session
Salt) and *V, *W, *X, *Y (Secure Session Verifier) for more information.

Note There is not an enforced password length. We recommend a minimum length of at least eight
characters. The password should not exceed 64 characters, as it will exceed the maximum length of
an API frame.

Start a secure session
A secure session can only be started in API mode. Once you have been authenticated you may send
data in API mode or Transparent mode, but API mode is the recommended way to communicate.
To start a secure session:

1. Send a type Secure Session Control - 0x2E to your local client device with the address of the
server device (not a broadcast address), the options bit field set to 0x00, the timeout for the
session, and the password that was previously set on the server.

2. The client and server devices will send/exchange several packets to authenticate the session.

Secure access Secured remote AT commands

Digi XBee® 3 Zigbee® RF Module 45

3. When authentication is complete, the client device will output a Secure Session Response -
0xAE to indicate whether the login was a success or failure.

At this point if authentication was successful, the secure session is established and the client can send
secured data to the server until the session times out.

Note A device can have one outgoing session—a session in which the node is a client—at a time.
Attempting to start a new session while a session is already in progress automatically ends the
previous session.

Note A device can have up to four incoming sessions—sessions in which the device is a server—at a
time. Once that number has been reached, additional authentication requests are rejected until one
of the active sessions ends.

End a secure session
A client can end a session by either waiting for the timeout to expire or by ending it manually. To end a
session, send a Secure Session Control - 0x2E to the local client device with bit 0 of the options field
set and with no password.
The device ends the outgoing secure session with the node whose address is specified in the type
0x2E frame. This frame can be sent even if the node does not have a session with the specified
address—the device will send a message to the specified server prompting it to clear out any
incoming session data related to the client (this can be used if the server and client fall out of sync. For
example, if the client device unexpectedly loses power during a session.
Sending a type 0x2E frame with the logout option bit set, and the address field set to the broadcast
address will end whatever outgoing session is currently active on the client and broadcast a request
to all servers to clear any incoming session data related to that client.

Secured remote AT commands

Secure a node against unauthorized remote configuration
Secured Access is enabled by setting bits of SA (Secure Access). Additionally, an SRP Salt (*S) and
verifier (*V, *W, *X, *Y) must be set. You can use XCTU to generate the salt and verifier based on a
password.

Configure a node with a salt and verifier
In this example, the password is pickle.

1. The salt is randomly generated and the verifier is derived from the salt and password as
follows:

*S = 0x1938438E
*V = 0x0771F57C397AE4019347D36FD1B9D91FA05B2E5D7365A161318E46F72942A45D
*W = 0xD4E44C664B5609C6D2BE3258211A7A20374FA65FC7C82895C6FD0B3399E73770
*X = 0x63018D3FEA59439A9EFAE3CD658873F475EAC94ADF7DC6C2C005b930042A0B74
*Y = 0xAEE84E7A00B74DD2E19E257192EDE6B1D4ED993947DF2996CAE0D644C28E8307

Secure access Secured remote AT commands

Digi XBee® 3 Zigbee® RF Module 46

Note The salt and verifier will not always be the same even if the same password is used to generate
them.

2. Enforce secure access for Remote AT Commands by setting Bit 1 of the SA command:

SA = 0x02

3. Write the configuration to flash using WR (Write).

WARNING! Make sure that this step is completed. If your device resets for any reason and
*S and SA are not written to flash they will revert to defaults, rendering the node open to
insecure access.

4. From now on, any attempt to issue a Remote AT Command Request - 0x17 to this device will
be rejected with a 0x0B status unless a secure session is established first.

Remotely configure a node that has been secured
In the example above a node is secured against unauthorized remote configuration. In this instance,
the secured node acts as a Secure Session Server (remote). The sequence below describes how a
Secure Session Client (local) can authenticate and securely configure the server remotely.

Establish a secure session using the password that was set on the server node

1. Generate a Secure Session Control - 0x2E.

n The destination address must match the 64-bit address (SH + SL) of the remote server.
n Since you are logging in, leave the options field as 0x00.
n Set a five minute timeout, which should give sufficient time for ad hoc configuration. The units

are in tenths of a second, so 0x0BB8 gives you five minutes.
n The options are set for a fixed duration, so after the five minutes expire, both the server and

client emit a modem status indicating the session ended.
n Enter the original password used to generate the verifier from the random salt above.

2. Pass the type 0x2E Control frame into the serial interface of the local client:

n For example, to log into a Secure Session server at address 0013A200 417B2162 for a five
minute duration using the password pickle, use the following frame:
7E 00 12 2E 00 13 A2 00 41 7B 21 62 00 0B B8 70 69 63 6B 6C 65 A2

3. Wait for a Secure Session Response - 0xAE to indicate the session establishment succeeded or
failed with the reason.

n The address of the remote that is responding and the status is included in the response.
n For example, the response to the request above is as follows:

7E 00 0B AE 00 00 13 A2 00 41 7B 21 62 00 5D. The 0x00 status indicates success.

4. Send remote AT Commands to the remote server using the Remote AT Command Request -
0x17 with bit 4 of the Command Options field set. Bit 4 indicates the AT command should be
sent securely.

Secure access Send data to a secured remote node

Digi XBee® 3 Zigbee® RF Module 47

Send data to a secured remote node
The process to send secured data is very similar to remotely configuring a node. The following steps
show how a client node can authenticate with a server node and send data securely.

1. Send a Secure Session Control - 0x2E to the client node with:
n The server's 64-bit address.
n The desired timeout.
n The options field set to 0x00 for fixed timeout login or to 0x04 for inter-packet timeout

refresh login.
n The password of the server node.

2. Wait for the Secure Session Response - 0xAE to determine if the the authentication was
successful.

3. Data can now be sent securely with Transmit Request - 0x10 and Explicit Addressing Command
Request - 0x11 provided that:

n Bit 4 in the transmit options field is set to indicate that the data should be sent
encrypted.

4. The returned Receive Packet - 0x90 and Explicit Receive Indicator - 0x91 receive options fields
should also have bit 4 set.

Note The maximum payload per transmission size is reduced by four bytes due to the additional
encryption overhead. NP (Maximum Packet Payload Bytes) will not reflect this change when the
session is going on.

A node can be secured against emitting data out the serial port that was received insecurely via the
SA command. This means that a remote node will not emit any serial data if it was received insecurely
(TO (Transmit Options) bit 4 was not set). This includes any data in Transparent mode, 0x80, 0x90 and
0x91 frames.

End a session from a server
If bit 3 of AZ (Extended API Options) is set, the server emits an extendedmodem status (whenever a
client establishes a session with it) that includes the 64-bit address of the client. Using these statuses
the MCU connected to the server can keep track of sessions established with the server. To end a
session from the server do the following:

1. Send a Secure Session Control - 0x2E to the server node with:
n The client's 64-bit address.
n The options field set to 0x02 for server side session termination.
n Set the timeout to 0x0000.

2. Wait for the Secure Session Response - 0xAE to determine if the termination was successful.
n The client will emit a modem status 0x3C (Session Ended).
n The server will also emit a modem status (or an extendedmodem status depending on

AZ) of 0x3C (Session Ended).

Note The 64-bit address can be set to the broadcast address to end all incoming sessions.

Secure access Secure Session API frames

Digi XBee® 3 Zigbee® RF Module 48

Note This functionality can be used to end orphaned client-side sessions—in case the server
unexpectedly reset for some reason.

Secure Session API frames
Secure Session can only be established from a node that is operating in API mode (MicroPython
support is forthcoming). The server-side can be in Transparent mode, but the client must be in API
mode. Once a session has been established between a client and server node, the client can be
transitioned to Transparent mode; and if bit 4 of TO is set, the client will encrypt data sent in
Transparent mode for the duration of session.
There are four frames that are used for controlling and observing a secure session.

n Secure Session Control - 0x2E: This frame is passed to the client that wishes to log into or out
of a server. Any attempt to use the Control frame will generate a response frame.

n Secure Session Response - 0xAE: This frame returns the status of the previously sent 0x2E
frame indicating whether it was successful or not.

n Modem Status - 0x8A: The server will also emit a modem status whenever an attempt
succeeds, fails, or was terminated. The client will also emit modem statuses if the session
times out.

n Extended Modem Status - 0x98: If bit 3 of AZ is set then modem statuses will be replaced with
extendedmodem statuses. These frames will contain the status that caused them to be
emitted as well as the address of the node that initiated the session, the session options, and
the timeout value.

Frame exchanges:

Secure transmission failures
This section describes the error messages you can see when trying to send a secure packet.

Secure access Secure transmission failures

Digi XBee® 3 Zigbee® RF Module 49

Data Frames - 0x10 and 0x11 frames
n Response frame type: Extended Transmit Status - 0x8B

Possible error statuses:

Status Description Reason

0x34 No Secure
Session
Connection

The sending node does not have an active session with the destination
node.

0x35 Encryption
Failure

The encryption process failed. Only likely to be seen when using manual
SRP and when an invalid encryption parameter was passed in.

Remote AT Commands- 0x17 frames
n Response frame type: Remote AT Command Response- 0x97

Possible error statuses:

Status Description Reason

0x0B No Secure Session
Connection

The sending node does not have an active session with the
destination node.

0x0C Encryption Error There was an internal encryption error on the radio.

0x0D TO Bit Not Set The client has a session with the server but forgot to set the
TO bit.

File system

For detailed information about using MicroPython on the XBee 3 Zigbee RF Module refer to the Digi
MicroPython Programming Guide.

Overview of the file system 51
Directory structure 51
Paths 51
Limitations 51
XCTU interface 52

Digi XBee® 3 Zigbee® RF Module 50

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

File system Overview of the file system

Digi XBee® 3 Zigbee® RF Module 51

Overview of the file system
XBee 3 Zigbee RF Module firmware versions 1006 and later include support for storing files in internal
flash memory.

CAUTION! You need to format the file system if upgrading a device that originally shipped
with older firmware. You can use XCTU, AT commands or MicroPython for that initial format
or to erase existing content at any time.

Note To use XCTU with file system, you need XCTU 6.4.0 or newer.

See FS FORMAT confirm in FS (File System) and ensure that the format is complete.

Directory structure
The XBee 3 Zigbee RF Module's internal flash appears in the file system as /flash, the only entry at the
root level of the file system. Files and directories other than /flash cannot be created within the root
directory, only within /flash. By default /flash contains a lib directory intended for MicroPython
modules.

Paths
The XBee 3 Zigbee RF Module stores all of its files in the top-level directory /flash. On startup, the
ATFS commands and MicroPython each use that directory as their current working directory. When
specifying the path to a file or directory, it is interpreted as follows:

n Paths starting with a forward slash are "absolute" andmust start with /flash to be valid.
n All other paths are relative to the current working directory.
n The directory .. refers to the parent directory, so an operation on ../filename.txt that takes

place in the directory /flash/test accesses the file /flash/filename.txt.
n The directory . refers to the current directory, so the command ATFS ls . lists files in the

current directory.
n Names are case-insensitive, so FILE.TXT, file.txt and FiLe.TxT all refer to the same file.
n File and directory names are limited to 64 characters, and can only contain letters, numbers,

periods, dashes and underscores. A period at the end of the name is ignored.
n The full, absolute path to a file or directory is limited to 255 characters.

Limitations
The file system on the XBee 3 Zigbee RF Module has a few limitations when compared to conventional
file systems:

n When a file on the file system is deleted, the space it was using is only reclaimed if it is found at
the end of the file system. Deleted data that is contiguous with the last placed deleted file is
also reclaimed.

n The file system can only have one file open for writing at a time.
n The file system cannot create new directories while a file is open for writing.

File system XCTU interface

Digi XBee® 3 Zigbee® RF Module 52

n Files cannot be renamed.
n The contents of the file system will be lost when any firmware update is performed. See OTA

file system upgrades for information on how to put files on a device after a FOTA update.

XCTU interface
XCTU releases starting with 6.4.0 include a File System Manager in the Tools menu. You can upload
files to and download files from the device, in addition to renaming and deleting existing files and
directories. See the File System manager tool section of the XCTU User Guide for details of its
functionality.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_file_system_manager_tool.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

Get started with BLE

Bluetooth® Low Energy (BLE) is a RF protocol that enables you to connect your XBee device to
another device. Both devices must have BLE enabled.
For example, you can use your cellphone to connect to your XBee device, and then from your phone,
configure and program the device.
Digi created the Digi XBee Mobile SDK, a set of libraries, examples and documentation that help you
developmobile applications to interact with XBee devices through their BLE interface. For this
purpose, we provide two easy-to-use libraries that allow you to create XBee mobile native apps:

n XBee Library for Xamarin, to develop cross-platform mobile applications using C# language (iOS
and Android).

n XBee Library for Android, to develop Android applications using Java

The XBee is the server and allows client devices, such as a cellphone, to configure the XBee or data
transfer with the User Data Relay frame. The XBee cannot communicate with another XBee over BLE,
as the XBee is strictly a BLE server. The possibilities are:

n XBee 3: can communicate with mobile devices over BLE
n XBee 3: can communicate with third party devices such as the Nordic nRF and SiLabs BGM over

BLE
n XBee 3: cannot communicate with another XBee 3 over BLE

Enable BLE on the XBee 3 Zigbee RF Module 54
Enable BLE and configure the BLE password 54
Get the Digi XBee Mobile phone application 55
Connect with BLE and configure your XBee 3 device 56

Digi XBee® 3 Zigbee® RF Module 53

https://www.digi.com/products/embedded-systems/digi-xbee/digi-xbee-tools/digi-xbee-mobile-sdk
https://github.com/digidotcom/xbee-csharp
https://github.com/digidotcom/xbee-android

Get started with BLE Enable BLE on the XBee 3 Zigbee RF Module

Digi XBee® 3 Zigbee® RF Module 54

Enable BLE on the XBee 3 Zigbee RF Module
To enable BLE on a XBee 3 Zigbee RF Module and verify the connection:

1. Set up the XBee 3 Zigbee RF Module andmake sure to connect the antenna to the device.
2. Enable BLE and configure the BLE password.
3. Get the Digi XBee Mobile phone application.
4. Connect with BLE and configure your XBee 3 device.

Note The BLE protocol is disabled on the XBee 3 Zigbee RF Module by default. You can create a custom
factory default configuration that ensures BLE is always enabled. See Custom configuration: Create a
new factory default.

Enable BLE and configure the BLE password
Some of the latest XBee 3 devices support Bluetooth Low Energy (BLE) as an extra interface for
configuration. If you want to use this feature, you have to enable BLE. You must also enable security by
setting a password on the XBee 3 Zigbee RF Module in order to connect, configure, or send data over
BLE.
Use XCTU to configure the BLE password. Make sure you have installed or updated XCTU to version
6.4.2 or newer. Earlier versions of XCTU do not include the BLE configuration features. See Download
and install XCTU for installation instructions.
Before you begin, you should determine the password you want to use for BLE on the XBee 3 Zigbee
RF Module and store it in a secure place. We recommend a secure password of at least eight
characters and a random combination of letters, numbers, and special characters. We recommend
using a security management tool such as LastPass or Keepass for generating and storing passwords
for many devices.

Note When you enter the BLE password in XCTU, the salt and verifier values are calculated as you set
your password. For more information on how these values are used in the authentication process, see
BLE Unlock Request - 0x2C.

1. Launch XCTU .

2. Switch to Configuration working mode .
3. Select a BLE compatible radio module from the device list.
4. Select Enabled[1] from the BT Bluetooth Enable command drop-down.

5. Click the Write setting button . The Bluetooth authentication not set dialog appears.

Note If BLE has been previously configured, the Bluetooth authentication not set dialog does not
appear. If this happens, click Configure in the Bluetooth Options section to display the Configure
Bluetooth Authentication dialog.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_downloading_installing_xctu.htm%3FTocPath%3DDownload%2520and%2520install%2520XCTU|_____0
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_downloading_installing_xctu.htm%3FTocPath%3DDownload%2520and%2520install%2520XCTU|_____0

Get started with BLE Get the Digi XBee Mobile phone application

Digi XBee® 3 Zigbee® RF Module 55

6. Click Configure in the dialog. The Configure Bluetooth Authentication dialog appears.
7. In the Password field, type the password for the device. As you type, the Salt and Verifier fields

are automatically calculated and populated in the dialog as shown above. This password is
used when you connect to this XBee device via BLE using the Digi XBee Mobile app.

8. Click OK to save the configuration.

Get the Digi XBee Mobile phone application
To see the nearby devices that have BLE enabled, you must get the free Digi XBee Mobile application
from the iOS App Store or Google Play and downloaded to your phone.

1. On your phone, go to the App store.
2. Search for: Digi XBee Mobile.
3. Download and install the app.

The Digi is compatible with the following operating systems and versions:

Get started with BLE Connect with BLE and configure your XBee 3 device

Digi XBee® 3 Zigbee® RF Module 56

n Android 5.0 or higher
n iOS 11 or higher

Connect with BLE and configure your XBee 3 device
You can use the Digi XBee Mobile application to verify that BLE is enabled on your XBee device.

1. Get the Digi XBee Mobile phone application.
2. Open the Digi XBee Mobile application. The Find XBee devices screen appears and the app

automatically begins scanning for devices. All nearby devices with BLE enabled are displayed in
a list.

3. Scroll through the list to find your XBee device.
The first time you open the app on a phone and scan for devices, the device list contains only
the name of the device and the BLE signal strength. No identifying information for the device
displays. After you have authenticated the device, the device information is cached on the
phone. The next time the app on this phone connects to the XBee device, the IMEI for the
device displays in the app device list.

Note The IMEI is derived from the SH and SL values.

4. Tap the XBee device name in the list. A password dialog appears.
5. Enter the password you previously configured for the device in XCTU.
6. TapOK. The Device Information screen displays. You can now scroll through the settings for

the device and change the device's configuration as needed.

BLE reference

BLE advertising behavior and services 58
Device Information Service 58
XBee API BLE Service 58
API Request characteristic 58
API Response characteristic 59

Digi XBee® 3 Zigbee® RF Module 57

BLE reference BLE advertising behavior and services

Digi XBee® 3 Zigbee® RF Module 58

BLE advertising behavior and services
When the Bluetooth radio is enabled, periodic BLE advertisements are transmitted. The
advertisement data includes the product name in the Complete Local Name field. When an XBee
device connects to the Bluetooth radio, the BLE services are listed:

n Device Information Service
n XBee API BLE Service

Device Information Service
The standard Device Information Service is used. The Manufacturer, Model, and Firmware Revision
characters are provided inside the service.

XBee API BLE Service
You can configure the XBee 3 Zigbee RF Module through the BLE interface using API frame requests
and responses. The API frame format through Bluetooth is equivalent to setting AP = 1 and
transmitting the frames over the UART or SPI interface. API frames can be executed over Bluetooth
regardless of the AP setting.
The BLE interface allows these frames:

n BLE Unlock Request - 0x2C
n User Data Relay Input - 0x2D
n BLE Unlock Response - 0xAC
n Local AT Command Request - 0x08
n Queue Local AT Command Request - 0x09

This API reference assumes that you are familiar with Bluetooth and GATT services. The specifications
for Bluetooth are an open standard and can be found at the following links:

n Bluetooth Core Specifications: bluetooth.com/specifications/bluetooth-core-specification
n Bluetooth GATT: bluetooth.com/specifications/gatt/generic-attributes-overview

The XBee API BLE Service contains two characteristics: the API Request characteristic and the API
Response characteristic. The UUIDs for the service and its characteristics are listed in the table
below.

Characteristic UUID

API Service UUID 53da53b9-0447-425a-b9ea-9837505eb59a

API Request Characteristic UUID 7dddca00-3e05-4651-9254-44074792c590

API Response Characteristic UUID f9279ee9-2cd0-410c-81cc-adf11e4e5aea

API Request characteristic
UUID: 7dddca00-3e05-4651-9254-44074792c590
Permissions: Writeable

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

BLE reference API Response characteristic

Digi XBee® 3 Zigbee® RF Module 59

XBee API frames are broken into chunks and transmitted sequentially to the request characteristic
using write operations. Valid frames are then processed and the result is returned through indications
on the response characteristic.
API frames do not need to be written completely in a single write operation to the request
characteristic. In fact, Bluetooth limits the size of a written value to 3 bytes smaller than the
configured Maximum Transmission Unit (MTU), which defaults to 23, meaning that by default, you can
only write 20 bytes at a time.
After connecting you must send a valid Bluetooth Unlock API Frame in order to authenticate the
connection. If the BLE Unlock API - 0x2C frame has not been executed, all other API frames are silently
ignored and are not processed.

API Response characteristic
UUID: f9279ee9-2cd0-410c-81cc-adf11e4e5aea
Permissions: Readable, Indicate
Responses to API requests made to the request characteristic are returned through the response
characteristics. This characteristic cannot be read directly.
Response data is presented through indications on this characteristic. Indications are acknowledged
and re-transmitted at the BLE link layer and application layer and provide a robust transport for this
data.

Serial communication

Serial interface 61
UART data flow 61
Serial buffers 62
UART flow control 63
Break control 63
I2C 64

Digi XBee® 3 Zigbee® RF Module 60

Serial communication Serial interface

Digi XBee® 3 Zigbee® RF Module 61

Serial interface
The XBee 3 Zigbee RF Module interfaces to a host device through a serial port. The device can
communicate through its serial port:

n Through logic and voltage compatible universal asynchronous receiver/transmitter (UART).
n Through a level translator to any serial device, for example through an RS-232 or USB interface

board.
n Through SPI, as described in SPI communications.

UART data flow
Devices that have a UART interface connect directly to the pins of the XBee 3 Zigbee RF Module as
shown in the following figure. The figure shows system data flow in a UART-interfaced environment.
Low-asserted signals have a horizontal line over the signal name.

For more information about hardware specifications for the UART, see the XBee 3 Hardware Reference
Manual.

Serial data
A device sends data to the XBee 3 Zigbee RF Module's UART as an asynchronous serial signal. When
the device is not transmitting data, the signals should idle high.
For serial communication to occur, you must configure the UART of both devices (the microcontroller
and the XBee 3 Zigbee RF Module) with compatible settings for the baud rate, parity, start bits, stop
bits, and data bits.
Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high).
The following diagram illustrates the serial bit pattern of data passing through the device. The
diagram shows UART data packet 0x1F (decimal number 31) as transmitted through the device.

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

Serial communication Serial buffers

Digi XBee® 3 Zigbee® RF Module 62

You can configure the UART baud rate, parity, and stop bits settings on the device with the BD, NB,
and SB commands respectively. For more information, see UART interface commands.

Serial buffers
The XBee 3 Zigbee RF Module maintains internal buffers to collect serial and RF data that it receives.
The serial receive buffer collects incoming serial characters and holds them until the device can
process them. The serial transmit buffer collects the data it receives via the RF link until it transmits
that data out the serial port. The following figure shows the process of device buffers collecting
received serial data.

Serial receive buffer
When serial data enters the XBee 3 Zigbee RF Module through the serial port, the device stores the
data in the serial receive buffer until it can be processed. Under certain conditions, the device may
receive data when the serial receive buffer is already full. In that case, the device discards the data.
The serial receive buffer becomes full when data is streaming into the serial port faster than it can be
processed and sent over the air (OTA). The size of the Serial receive buffer is 768 Bytes; the serial
buffer may be reduced in size if RAM requirements cannot be met in future firmware releases. While
the speed of receiving the data on the serial port can be much faster than the speed of transmitting
data for a short period, sustained operation in that mode causes the device to drop data due to
running out of places to put the data. Some things that may delay over the air transmissions are
address discovery, route discovery, and retransmissions. Processing received RF data can also take
away time and resources for processing incoming serial data.

Serial communication UART flow control

Digi XBee® 3 Zigbee® RF Module 63

If the UART is the serial port and you enable the CTS flow control, the device alerts the external data
source when the receive buffer is almost full. The host delays sending data to the device until the
module asserts CTS again, allowing more data to come in.

Serial transmit buffer
When the device receives RF data, it moves the data into the serial transmit buffer and sends it out
the UART. If the serial transmit buffer becomes full and the system buffers are also full, then it drops
the entire RF data packet. The size of the Serial transmit buffer is 1056 Bytes; the serial buffer may be
reduced in size if RAM requirements cannot be met in future firmware releases.Whenever the device
receives data faster than it can process and transmit the data out the serial port, there is a potential
of dropping data.
In situations where the serial transmit buffer may become full, resulting in dropped RF packets:

1. If the RF data rate is set higher than the interface data rate of the device, the device may
receive data faster than it can send the data to the host. Even occasional transmissions from a
large number of devices can quickly accumulate and overflow the transmit buffer.

2. If the host does not allow the device to transmit data out from the serial transmit buffer due to
being held off by hardware flow control.

UART flow control
You can use the RTS and CTS pins to provide RTS and/or CTS flow control. CTS flow control provides an
indication to the host to stop sending serial data to the device. RTS flow control allows the host to
signal the device to not send data in the serial transmit buffer out the UART. To enable RTS/CTS flow
control, use the D6 and D7 commands.

CTS flow control
If you enable CTS flow control (D7 command), when the serial receive buffer is 17 bytes away from
being full, the device de-asserts CTS (sets it high) to signal to the host device to stop sending serial
data.

RTS flow control
If you set D6 (DIO6/RTS) to enable RTS flow control, the device does not send data in the serial
transmit buffer out the DOUT pin as long as RTS is de-asserted (set high). Do not de-assert RTS for
long periods of time or the serial transmit buffer will fill. If the device receives an RF data packet and
the serial transmit buffer does not have enough space for all of the data bytes, it discards the entire
RF data packet.
If the device sends data out the UART when RTS is de-asserted (set high) the device could send up to
five characters out the UART port after RTS is de-asserted.

Break control
If a serial break—DIN held low—signal is sent for over five seconds, the device resets, and it boots into
Commandmode with default baud settings—9600 baud. Note that after receiving the OK prompt,
serial break must be released in order to allow input from the keyboard at 9600 baud. If either P3 or
P4 are not enabled, this break function is disabled.

Serial communication I2C

Digi XBee® 3 Zigbee® RF Module 64

I2C
I2C master operation is supported using MicroPython.
See the Class I2C: two-wire serial protocol section in the Digi MicroPython Programming Guide for
details.

https://www.digi.com/resources/documentation/Digidocs/90002219/

SPI operation

This section specifies how SPI is implemented on the device, what the SPI signals are, and how full
duplex operations work.

SPI communications 66
Full duplex operation 66
Low power operation 67
Select the SPI port 68
Force UART operation 69

Digi XBee® 3 Zigbee® RF Module 65

SPI operation SPI communications

Digi XBee® 3 Zigbee® RF Module 66

SPI communications
The XBee 3 Zigbee RF Module supports SPI communications in slave mode. Slave mode receives the
clock signal and data from the master and returns data to the master. The following table shows the
signals that the SPI port uses on the device.
Refer to the XBee 3 Hardware Reference Guide for the pinout of your device.

Signal Direction Function

SPI_MOSI
(Master Out, Slave In)

Input Inputs serial data from the master

SPI_MISO (Master
In, Slave Out)

Output Outputs serial data to the master

SPI_SCLK (Serial Clock) Input Clocks data transfers on MOSI and MISO

SPI_SSEL (Slave Select) Input Enables serial communication with the slave

SPI_ATTN (Attention) Output Alerts the master that slave has data queued to send. The
XBee 3 Zigbee RF Module asserts this pin as soon as data is
available to send to the SPI master and it remains asserted
until the SPI master has clocked out all available data.

In this mode:

n SPI clock rates up to 5 MHz (burst) are possible.
n Data is most significant bit (MSB) first; bit 7 is the first bit of a byte sent over the interface.
n Frame Format mode 0 is used. This means CPOL= 0 (idle clock is low) and CPHA = 0 (data is

sampled on the clock’s leading edge).
n The SPI port only supports API Mode (AP = 1).

The following diagram shows the frame format mode 0 for SPI communications.

SPI mode is chip to chip communication. We do not supply a SPI communication interface on the XBee
development evaluation boards included in the development kit.

Full duplex operation
When using SPI on the XBee 3 Zigbee RF Module the device uses API operation without escaped
characters to packetize data. The device ignores the configuration of AP because SPI does not

https://www.digi.com/resources/documentation/Digidocs/90001543/

SPI operation Low power operation

Digi XBee® 3 Zigbee® RF Module 67

operate in any other mode. SPI is a full duplex protocol, even when data is only available in one
direction. This means that whenever a device receives data, it also transmits, and that data is
normally invalid. Likewise, whenever a device transmits data, invalid data is probably received. To
determine whether or not received data is invalid, the firmware places the data in API packets.
SPI allows for valid data from the slave to begin before, at the same time, or after valid data begins
from the master. When the master sends data to the slave and the slave has valid data to send in the
middle of receiving data from the master, a full duplex operation occurs, where data is valid in both
directions for a period of time. Not only must the master and the slave both be able to keep up with
the full duplex operation, but both sides must honor the protocol.
The following figure illustrates the SPI interface while valid data is being sent in both directions.

Low power operation
Sleepmodes generally work the same on SPI as they do on UART. However, due to the addition of SPI
mode, there is an option of another sleep pin, as described below.
By default, Digi configures DIO8 (SLEEP_REQUEST) as a peripheral and during pin sleep it wakes the
device and puts it to sleep. This applies to both the UART and SPI serial interfaces.
If SLEEP_REQUEST is not configured as a peripheral and SPI_SSEL is configured as a peripheral, then
pin sleep is controlled by SPI_SSEL rather than by SLEEP_REQUEST. Asserting SPI_SSEL by driving it
low either wakes the device or keeps it awake. Negating SPI_SSEL by driving it high puts the device to
sleep.
Using SPI_SSEL to control sleep and to indicate that the SPI master has selected a particular slave
device has the advantage of requiring one less physical pin connection to implement pin sleep on SPI.
It has the disadvantage of putting the device to sleep whenever the SPI master negates SPI_SSEL
(meaning time is lost waiting for the device to wake), even if that was not the intent.
If the user has full control of SPI_SSEL so that it can control pin sleep, whether or not data needs to be
transmitted, then sharing the pin may be a good option in order to make the SLEEP_REQUEST pin
available for another purpose. Without control of SPI_SSEL while using it for sleep request, the device
may go to sleep at inopportune times.
If the device is one of multiple slaves on the SPI, then the device sleeps while the SPI master talks to
the other slave, but this is acceptable in most cases.
If you do not configure either pin as a peripheral, then the device stays awake, being unable to sleep in
SM1 mode.

SPI operation Select the SPI port

Digi XBee® 3 Zigbee® RF Module 68

Select the SPI port
To force SPI mode on through-hole devices, hold DOUT/DIO13 low while resetting the device until SPI_
ATTN asserts. This causes the device to disable the UART and go straight into SPI communication
mode. Once configuration is complete, the device queues a modem status frame to the SPI port,
which causes the SPI_ATTN line to assert. The host can use this to determine that the SPI port is
configured properly.
On surface-mount devices, forcing DOUT low at the time of reset has no effect. To use SPI mode on
the SMT modules, assert the SPI_SSEL low after reset and before any UART data is input.
Forcing DOUT low on TH devices forces the device to enable SPI support by setting the following
configuration values:

Through-hole Micro and Surface-mount SPI signal

D1 (AD1/DIO1/TH_SPI_ATTN Configuration) P9 (DIO19/SPI_ATTN Configuration) ATTN

D2 (DIO2/AD2/TH_SPI_CLK Configuration) P8 (DIO18/SPI_CLK Configuration) SCLK

D3 (DIO3/AD3/TH_SPI_SSEL Configuration) P7 (DIO17/SPI_SSEL Configuration) SSEL

D4 (DIO4/TH_SPI_MOSI Configuration) P6 (DIO16/SPI_MOSI Configuration) MOSI

P2 (DIO12/TH_SPI_MISO Configuration) P5 (DIO15/SPI_MISO Configuration) MISO

Note The ATTN signal is optional—you can still use SPI mode if you disable the SPI_ATTN pin (D1 on
through-hole or P9 on surface-mount devices).

As long as the host does not issue a WR command, these configuration values revert to previous
values after a power-on reset. If the host issues a WR command while in SPI mode, these same
parameters are written to flash, and after a reset the device continues to operate in SPI mode.
If the UART is disabled and the SPI is enabled in the written configuration, then the device comes up in
SPI mode without forcing it by holding DOUT low. If both the UART and the SPI are configured (P3
(DIO13/DOUT Configuration) through P9 (DIO19/SPI_ATTN Configuration) are set to 1) at the time of
reset, then output goes to the UART until the host sends the first input to the SPI interface. As soon as
the first input comes on the SPI port, then all subsequent output goes to the SPI port and the UART is
disabled.
Once you select a serial port (UART or SPI), all subsequent output goes to that port, even if you apply a
new configuration. Once the SPI interface is made active, the only way to switch the selected serial
port back to UART is to reset the device.
When the master asserts the slave select (SPI_SSEL) signal, SPI transmit data is driven to the output
pin SPI_MISO, and SPI data is received from the input pin SPI_MOSI. The SPI_SSEL pin has to be
asserted to enable the transmit serializer to drive data to the output signal SPI_MISO. A rising edge
on SPI_SSEL causes the SPI_MISO line to be tri-stated such that another slave device can drive it, if so
desired.
If the output buffer is empty, the SPI serializer transmits the last valid bit repeatedly, which may be
either high or low. Otherwise, the device formats all output in API mode 1 format, as described in
Operate in API mode. The attached host is expected to ignore all data that is not part of a formatted
API frame.

SPI operation Force UART operation

Digi XBee® 3 Zigbee® RF Module 69

Force UART operation
If you configure a device with only the SPI enabled and no SPI master is available to access the SPI
slave port, you can recover the device to UART operation by holding DIN / CONFIG low at reset time.
DIN/CONFIG forces a default configuration on the UART at 9600 baud and brings up the device in
Commandmode on the UART port. You can then send the appropriate commands to the device to
configure it for UART operation. If you write those parameters, the device comes up with the UART
enabled on the next reset.

Modes

The XBee 3 Zigbee RF Module is in Receive Mode when it is not transmitting data. It shifts into the
other modes of operation under the following conditions:

n Transmit mode (Serial data in the serial receive buffer is ready to be packetized)
n Commandmode (Commandmode sequence is issued)
n Sleepmode

Transparent operating mode 71
API operating mode 71
Commandmode 71
Idle mode 74
Transmit mode 74
Receive mode 75
Sleepmode 75

Digi XBee® 3 Zigbee® RF Module 70

Modes Transparent operating mode

Digi XBee® 3 Zigbee® RF Module 71

Transparent operating mode
When operating in Transparent mode, the devices act as a serial line replacement. The device queues
up all UART data received through the DIN pin for RF transmission. When RF data is received, the
device sends the data out through the serial port. Use the Commandmode interface to configure the
device configuration parameters.

Serial-to-RF packetization
The device buffers data in the serial receive buffer and packetizes and transmits the data when it
receives the following:

n No serial characters for the amount of time determined by the RO (Packetization Timeout)
parameter. If RO = 0, packetization begins when the device received a character.

n Commandmode Sequence (GT + CC + GT). Any character buffered in the serial receive buffer
before the device transmits the sequence.

n Maximum number of characters that fit in an RF packet.

API operating mode
API operating mode is an alternative to Transparent operating mode. The frame-based API extends
the level to which a host application can interact with the networking capabilities of the device. When
in API mode, the device contains all data entering and leaving in frames that define operations or
events within the device.
The API provides alternative means of configuring devices and routing data at the host application
layer. A host application can send data frames to the device that contain address and payload
information instead of using Commandmode to modify addresses. The device sends data frames to
the application containing status packets, as well as source and payload information from received
data packets.
The API operation option facilitates many operations such as:

n Transmitting data to multiple destinations without entering Commandmode
n Receive success/failure status of each transmitted RF packet
n Identify the source address of each received packet

Command mode
Commandmode is a state in which the firmware interprets incoming characters as commands. It
allows you to modify the device’s configuration using parameters you can set using AT
commands. When you want to read or set any parameter of the XBee 3 Zigbee RF Module using this
mode, you have to send an AT command. Every AT command starts with the letters AT followed by the
two characters that identify the command and then by some optional configuration values.
The operating modes of the XBee 3 Zigbee RF Module are controlled by the AP (API Enable) setting,
but Commandmode is always available as a mode the device can enter while configured for any of the
operating modes.
Commandmode is available on the UART interface for all operating modes. You cannot use the SPI
interface to enter Commandmode unless using SPI for the serial interface.

Modes Command mode

Digi XBee® 3 Zigbee® RF Module 72

Enter Command mode
When using the default configuration values for GT and CC, you must enter +++ preceded and followed
by one second of silence—no input—to enter Commandmode. However, both GT and CC are
configurable. This means that the silence before and after the escape sequence—GT—and the escape
characters themselves—CC—can be changed. For example, if GT is 5DC and CC is 31, then Command
mode can be entered by typing 111 preceded and followed by 1.5 seconds of silence. When the
entrance criteria are met the device responds with OK\r on UART signifying that it has entered
Commandmode successfully and is ready to start processing AT commands.
If configured to operate in Transparent operating mode, when entering Commandmode the XBee 3
Zigbee RF Module knows to stop sending data and start accepting commands locally.

Note Do not press Return or Enter after typing +++ because it interrupts the guard time silence and
prevents you from entering Commandmode.

When the device is in Commandmode, it listens for user input and is able to receive AT commands on
the UART. If CT time (default is 10 seconds) passes without any user input, the device drops out of
Commandmode and returns to the previous operating mode. You can force the device to leave
Commandmode by sending CN (Exit Commandmode).
You can customize the command character, the guard times and the timeout in the device’s
configuration settings. For more information, see CC (Command Character), CT (Command Mode
Timeout) and GT (Guard Times).

Troubleshooting
Failure to enter Commandmode is often due to baud rate mismatch. Ensure that the baud rate of the
connection matches the baud rate of the device. By default, BD (UART Baud Rate) = 3 (9600 b/s).
There are two alternative ways to enter Commandmode:

n A serial break for six seconds enters Commandmode. You can issue the "break" command
from a serial console, it is often a button or menu item.

n Asserting DIN (serial break) upon power up or reset enters Commandmode. XCTU guides you
through a reset and automatically issues the break when needed.

Note You must assert RTS for both of these methods, otherwise the device enters the bootloader.

Both of these methods temporarily set the device's baud rate to 9600 and return an OK on the UART
to indicate that Commandmode is active. When Commandmode exits, the device returns to normal
operation at the baud rate that BD is set to.

Send AT commands
Once the device enters Commandmode, use the syntax in the following figure to send AT commands.
Every AT command starts with the letters AT, which stands for "attention." The AT is followed by two
characters that indicate which command is being issued, then by some optional configuration values.
To read a parameter value stored in the device’s register, omit the parameter field.

Modes Command mode

Digi XBee® 3 Zigbee® RF Module 73

The preceding example changes NI (Node Identifier) to 2.

Multiple AT commands
You can sendmultiple AT commands at a time when they are separated by a comma in Command
mode; for example, ATNIMy XBee,AC<cr>.
The preceding example changes the NI (Node Identifier) toMy XBee andmakes the setting active
through AC (Apply Changes).

Parameter format
Refer to the list of AT commands for the format of individual AT command parameters. Valid formats
for hexidecimal values include with or without a leading 0x for example FFFF or 0xFFFF.

Response to AT commands
When using AT commands to set parameters the XBee 3 Zigbee RF Module responds with OK<cr> if
successful and ERROR<cr> if not.

Apply command changes
Any changes you make to the configuration command registers using AT commands do not take effect
until you apply the changes. For example, if you send the BD command to change the baud rate, the
actual baud rate does not change until you apply the changes. To apply changes:

1. Send AC (Apply Changes).
2. SendWR (Write). In this case, changes are only applied following a reset. The WR command by

itself does not apply changes.
or:

3. Exit Commandmode. You can exit Commandmode in two ways: Either enter the CN command
or wait for Commandmode to timeout as specified by the CT parameter.

Make command changes permanent
Send a WR (Write) command to save the changes.WRwrites parameter values to non-volatile memory
so that parameter modifications persist through subsequent resets.
Send an RE (Restore Defaults) followed byWR to restore parameters back to their factory defaults.
The next time the device is reset the default settings are applied.

Exit Command mode
1. Send CN (Exit Commandmode) followed by a carriage return.

or:

Modes Idle mode

Digi XBee® 3 Zigbee® RF Module 74

2. If the device does not receive any valid AT commands within the time specified by CT
(Command Mode Timeout), it returns to Transparent or API mode. The default Commandmode
timeout is 10 seconds.

For an example of programming the device using AT Commands and descriptions of each configurable
parameter, see AT commands.

Idle mode
When not receiving or transmitting data, the device is in Idle mode. During Idle mode, the device
listens for valid data on both the RF and serial ports.
The device shifts into the other modes of operation under the following conditions:

n Transmit mode (serial data in the serial receive buffer is ready to be packetized).
n Receive mode (valid RF data received through the antenna).
n Commandmode (Commandmode sequence issued).

Transmit mode
Prior to transmitting data, the module ensures that a 16-bit network address and route to the
destination node have been established.
If a 16-bit network address is not provided, a Network Address Discovery takes place. In order for
data to be sent, a route discovery takes place for the purpose of establishing a route to the
destination node. If a device with a matching network address is not discovered, it discards the
packet. The device transmits the data once a route is established. If route discovery fails to establish
a route, the device discards the packet. The following diagram shows the Transmit Mode sequence.

When Zigbee data is transmitted from one node to another, the destination node transmits a
network-level acknowledgment back across the established route to the source node. This
acknowledgment packet indicates to the source node that the destination node received the data
packet. If the source node does not receive a network acknowledgment, it retransmits the data.

Modes Receive mode

Digi XBee® 3 Zigbee® RF Module 75

It is possible in rare circumstances for the destination to receive a data packet, but for the source to
not receive the network acknowledgment. In this case, the source retransmits the data, which can
cause the destination to receive the same data packet multiple times. The XBee modules do not filter
out duplicate packets. We recommend that the application includes provisions to address this issue.
For more information, see Transmission, addressing, and routing.

Receive mode
When data is received over the air, the device sends the data out the serial port.
You can use the AP and AO parameters to adjust the format and types of messages that are emitted
out of the serial port. Depending on your needs, you can adjust the amount of information that you
receive.
By default, the device operates in Transparent mode where the the device will only output the payload
of received packets. In API modes, the entire packet is emitted, and AO adjusts whether raw ZDO
messages should be emitted.

Sleep mode
Sleepmodes allow the device to enter states of low power consumption when not in use. The XBee 3
Zigbee RF Module supports both pin sleep (Sleepmode entered on pin transition) and cyclic sleep
(device sleeps for a fixed time).
Sleepmodes allow the device to enter states of low power consumption when not in use. The device is
almost completely off during sleep, and is incapable of sending or receiving data until it wakes up.
XBee devices support pin sleep, where the device enters sleepmode upon pin transition, and cyclic
sleep, where the device sleeps for a fixed time.
For more information, see Manage End Devices.

Zigbee networks

The Zigbee specification 77
Zigbee stack layers 77
Zigbee networking concepts 78
Zigbee application layers: in depth 81
Zigbee coordinator operation 83
Router operation 88
End device operation 92
Channel scanning 95

Digi XBee® 3 Zigbee® RF Module 76

Zigbee networks The Zigbee specification

Digi XBee® 3 Zigbee® RF Module 77

The Zigbee specification
Zigbee is an open global standard for low-power, low-cost, low-data-rate, wireless mesh networking
based on the IEEE 802.15.4 standard. It represents a network layer above the 802.15.4 layers to
support advancedmesh routing capabilities. The Zigbee specification is developed by a consortium of
companies that make up the Zigbee Alliance. For more information, see zigbee.org.

Zigbee stack layers
Most network protocols use the concept of layers to separate different components and functions
into independent modules that can be assembled in different ways.
Zigbee is built on the Physical (PHY) layer and Medium Access Control (MAC) sub-layer defined in the
IEEE 802.15.4 standard. These layers handle low-level network operations such as addressing and
message transmission/reception.
The Zigbee specification defines the Network (NWK) layer and the framework for the application (APL)
layer. The Network layer takes care of the network structure, routing, and security. The application
layer framework consists of the Application Support sub-layer (APS), the Zigbee device objects (ZDO)
and user-defined applications that give the device its specific functionality.

This table describes the Zigbee layers.

Zigbee layer Descriptions

PHY Defines the physical operation of the Zigbee device including receive sensitivity,
channel rejection, output power, number of channels, chip modulation, and
transmission rate specifications. Most Zigbee applications operate on the 2.4 GHz
ISM band at a 250 kb/s data rate. See the IEEE 802.15.4 specification for details.

http://www.zigbee.org/

Zigbee networks Zigbee networking concepts

Digi XBee® 3 Zigbee® RF Module 78

Zigbee layer Descriptions

MAC Manages RF data transactions between neighboring devices (point to point). The
MAC includes services such as transmission retry and acknowledgment
management, and collision avoidance techniques (CSMA-CA).

Network Adds routing capabilities that allows RF data packets to traverse multiple devices
(multiple hops) to route data from source to destination (peer to peer).

APS (AF) Application layer that defines various addressing objects including profiles, clusters,
and endpoints.

ZDO Application layer that provides device and service discovery features and advanced
network management capabilities.

Zigbee networking concepts

Device types
Zigbee defines three different device types: coordinator, router, and end device.

Coordinator
Zigbee networks may only have a single coordinator device. This device:

n Starts the network, selecting the channel and PAN ID (both 64-bit and 16-bit).
n Distributes 16-bit network addresses, allowing routers and end devices to join the network.

Assists in routing data.
n Buffers wireless data packets for sleeping end device children.
n Manages the other functions that define the network, secure it, and keep it healthy.
n Cannot sleep; the coordinator must be powered on all the time.

Router
A router is a full-featured Zigbee node. This device:

n Can join existing networks and send, receive, and route information. Routing involves acting as
a messenger for communications between other devices that are too far apart to convey
information on their own.

n Can buffer wireless data packets for sleeping end device children. Can allow other routers and
end devices to join the network.

n Cannot sleep; router(s) must be powered on all the time.
n May have multiple router devices in a network.

End device
An end device is essentially a reduced version of a router. This device:

n Can join existing networks and send and receive information, but cannot act as messenger
between any other devices.

n Cannot allow other devices to join the network.

Zigbee networks Zigbee networking concepts

Digi XBee® 3 Zigbee® RF Module 79

n Uses less expensive hardware and can power itself down intermittently, saving energy by
temporarily entering a non responsive sleepmode.

n Always needs a router or the coordinator to be its parent device. The parent helps end devices
join the network, and stores messages for them when they are asleep.

Zigbee networks may have any number of end devices. In fact, a network can be composed of one
coordinator, multiple end devices, and zero routers.
The following diagram shows a generic Zigbee network.

Note Each Zigbee network must be formed by one, and only one, coordinator and at least one other
device (router or end device).

In Zigbee networks, the coordinator must select a PAN ID (64-bit and 16-bit) and channel to start a
network. After that, it behaves essentially like a router. The coordinator and routers can allow other
devices to join the network and can route data.
After an end device joins a router or coordinator, it must be able to transmit or receive RF data
through that router or coordinator. The router or coordinator that allowed an end device to join
becomes the “parent” of the end device. Since the end device can sleep, the parent must be able to
buffer or retain incoming data packets destined for the end device until the end device is able to wake
and receive the data.
A device can only operate as one of the three device types. The device type is selected by
configuration rather than by firmware image as was the case on earlier hardware platforms.
By default, the device operates as a router. To select coordinator operation, set CE to 1. To select end
device operation, set SM to a non-zero value. To select router operation, both CE and SMmust be 0.
If a device is a coordinator and it needs to be changed into an end device, you must set CE to 0 first. If
not, the SM configuration will conflict with the CE configuration. Likewise, to change an end device into
a coordinator, you must change it into a router first.
Another complication is that default parameters do not always work well for a coordinator.
For example:

n DH/DL is 0 by default, which allows routers and end devices to send transparent data to the
coordinator when they first come up. If DH/DL is not changed from the default value when the
device is changed to a coordinator, then the device sends data to itself, causing characters to
be echoed back to the screen as they are typed. Since this is probably not the desired

Zigbee networks Zigbee networking concepts

Digi XBee® 3 Zigbee® RF Module 80

operation, set DH/DL to the broadcast address or some specific unicast address when the
device is changed to a coordinator.

In general, it is your responsibility to ensure that parameters are set to be compatible with the new
device type when changing device types.

PAN ID
Zigbee networks are called personal area networks (PANs). Each network is defined with a unique
PAN identifier (PAN ID), which is common among all devices of the same network. Zigbee devices are
either preconfigured with a PAN ID to join, or they can discover nearby networks and select a PAN ID
to join.
Zigbee supports both a 64-bit and a 16-bit PAN ID. Both PAN IDs are used to uniquely identify a
network. Devices on the same Zigbee network must share the same 64-bit and 16-bit PAN IDs. If
multiple Zigbee networks are operating within range of each other, each should have unique PAN IDs.

16-bit PAN ID
The 16-bit PAN ID is used as a MAC layer addressing field in all RF data transmissions between devices
in a network. However, due to the limited addressing space of the 16-bit PAN ID (65,535 possibilities),
there is a possibility that multiple Zigbee networks (within range of each other) could use the same
16-bit PAN ID. To resolve potential 16-bit PAN ID conflicts, the Zigbee Alliance created a 64-bit PAN ID.

64-bit PAN ID
The 64-bit PAN ID (also called the extended PAN ID), is intended to be a unique, non-duplicated value.
When a coordinator starts a network, it can either start a network on a preconfigured 64-bit PAN ID,
or it can select a random 64-bit PAN ID. Devices use a 64-bit PAN ID during joining; if a device has a
preconfigured 64-bit PAN ID, it will only join a network with the same 64-bit PAN ID. Otherwise, a
device could join any detected PAN and inherit the PAN ID from the network when it joins. All Zigbee
beacons include the 64-bit PAN ID and is used in 16- bit PAN ID conflict resolution.

Routers and end devices
Routers and end devices are typically configured to join a network with any 16-bit PAN ID as long as
the 64-bit PAN ID is valid. Coordinators typically select a random 16-bit PAN ID for their network.
Since the 16-bit PAN ID only allows up to 65,535 unique values, and the device randomly selects the
16-bit PAN ID, provisions exist in Zigbee to detect if two networks (with different 64-bit PAN IDs) are
operating on the same 16- bit PAN ID. If the device detects a conflict, the Zigbee stack can perform
PAN ID conflict resolution to change the 16- bit PAN ID of the network in order to resolve the conflict.
See the Zigbee specification for details.
Zigbee routers and end devices should be configured with the 64-bit PAN ID of the network they want
to join, and they typically acquire the 16-bit PAN ID when they join a network.
Only enable CE on one device to avoid PAN ID conflicts and network problems.

Operating channels
Zigbee uses direct-sequence spread spectrum modulation and operates on a fixed channel. The
802.15.4 PHY defines 16 operating channels (channels 11 to 26) in the 2.4 GHz frequency band. XBee
modules support all 16 channels.
FCC regulations mandate lower power levels on channel 26, so if you fix your network to channel 26,
you will experience significantly less range on the devices.

Zigbee networks Zigbee application layers: in depth

Digi XBee® 3 Zigbee® RF Module 81

Zigbee application layers: in depth
The following topics provide a more in-depth look at the Zigbee application stack layers (APS, ZDO)
including a discussion on Zigbee endpoints, clusters, and profiles. Much of the material in these topics
discuss details of the Zigbee stack that are not required in many cases.
Read these topics if:

n The XBee 3 Zigbee RF Module may talk to non-Digi Zigbee devices.
n The XBee 3 Zigbee RF Module requires network management and discovery capabilities of the

ZDO layer.
n The XBee 3 Zigbee RF Module needs to operate in a public application profile (for example,

smart energy, home automation, and so on).

Skip these topics if:

n The XBee 3 Zigbee RF Module does not need to interoperate or talk to non-Digi Zigbee devices.
n The XBee 3 Zigbee RF Module simply needs to send data between devices.

Application Support Sublayer (APS)
The APS layer in Zigbee adds support for application profiles, cluster IDs, and endpoints.

Application profiles
Application profiles specify various device descriptions including required functionality for various
devices. The collection of device descriptions forms an application profile. Application profiles are
defined as Public or Private profiles. Private profiles are defined by a manufacturer whereas public
profiles are defined, developed, andmaintained by the Zigbee Alliance. Each application profile has a
unique profile identifier assigned by the Zigbee Alliance.
Examples of public profiles include:

n Home automation
n Smart Energy
n Commercial building automation

For example, the Smart Energy profile defines various device types including an energy service portal,
load controller, thermostat, in-home display, and so on. The Smart Energy profile defines required
functionality for each device type. For example, a load controller must respond to a defined command
to turn a load on or off. By defining standard communication protocols and device functionality, public
profiles allow interoperable Zigbee solutions to be developed by independent manufacturers.
Digi XBee Zigbee firmware operates on a private profile called the Digi Drop-In Networking profile.
However, in many cases the XBee 3 Zigbee RF Module can use API mode to talk to devices in public
profiles or non-Digi private profiles. For more information, see API Operation.

Clusters
A cluster is an application message type defined within a profile. You can use clusters to specify a
unique function, service, or action. The following examples are some clusters defined in the home
automation profile:

Zigbee networks Zigbee application layers: in depth

Digi XBee® 3 Zigbee® RF Module 82

n On/Off - Used to switch devices on or off (lights, thermostats, and so forth)
n Level Control - Used to control devices that can be set to a level between on and off
n Color Control - Controls the color of color capable devices

Each cluster has an associated 2-byte cluster identifier (cluster ID). All application transmissions
include the cluster ID. Clusters often have associated request and response messages. For example, a
smart energy gateway (service portal) might send a load control event to a load controller in order to
schedule turning on or off an appliance. Upon executing the event, the load controller sends a load
control report message back to the gateway.
Devices that operate in an application profile (private or public) must respond correctly to all required
clusters. For example, a light switch that operates in the home automation public profile must
correctly implement the On/Off and other required clusters in order to interoperate with other home
automation devices. The Zigbee Alliance has defined a Zigbee cluster library (ZCL) that contains
definitions or various general use clusters that could be implemented in any profile.
XBee modules implement various clusters in the Digi private profile. You can also use the API to send
or receive messages on any cluster ID (and profile ID or endpoint). For more information, see Explicit
Receive Indicator - 0x91.

Endpoints
The APS layer includes supports for endpoints. An endpoint can be thought of as a running application,
similar to a TCP/IP port. A single device can support one or more endpoints. A 1- byte value identifies
each application endpoint, ranging from 1 to 240. Each defined endpoint on a device is tied to an
application profile. A device could, for example, implement one endpoint that supports a Smart Energy
load controller, and another endpoint that supports other functionality on a private profile.
No TX Status frame is generated for API frames that have both 0xE6 as the destination endpoint and
0xC105 as the Profile ID as this combination is reserved for internal XBee 3 Zigbee RF Module
operations.
Endpoints 0xDC - 0xEE are reserved for special use by Digi and should not be used in an application
outside of the listed purpose. The reserved Digi endpoints are:

n 0xE8 - Digi data endpoint
n 0xE6 - Digi device object endpoint
n 0xE5 - Secure Session Server endpoint
n 0xE4 - Secure Session Client endpoint
n 0xE3 - Secure Session SRP authentication endpoint

Zigbee device profile
Profile ID 0x0000 is reserved for the Zigbee device profile. This profile is implemented on all Zigbee
devices. Device Profile defines many device and service discovery features and network management
capabilities. Endpoint 0 is a reserved endpoint that supports the Zigbee device profile. This endpoint is
called the Zigbee device objects (ZDO) endpoint.

Zigbee device objects
The ZDO (endpoint 0) supports the discovery andmanagement capabilities of the Zigbee device
profile. See the Zigbee specification for a complete listing of all ZDP services. Each service has an
associated cluster ID.
The XBee Zigbee firmware allows applications to easily send ZDO messages to devices in the network
using the API. For more information, see ZDO transmissions.

Zigbee networks Zigbee coordinator operation

Digi XBee® 3 Zigbee® RF Module 83

Zigbee coordinator operation

Form a network
The coordinator is responsible for selecting the channel, PAN ID, security policy, and stack profile for a
network. Since a coordinator is the only device type that can start a network, each Zigbee network
must have one coordinator. After the coordinator has started a network, it can allow new devices to
join the network. It can also route data packets and communicate with other devices on the network.
To ensure the coordinator starts on a good channel and unused PAN ID, the coordinator performs a
series of scans to discover any RF activity on different channels (energy scan) and to discover any
nearby operating PANs (PAN scan). The process for selecting the channel and PAN ID are described in
the following topics.

Security policy
The security policy determines which devices are allowed to join the network, and which device(s) can
authenticate joining devices. See Zigbee security for a detailed discussion of various security policies.

Channel selection
When starting a network, the coordinator must select a “good” channel for the network to operate
on. To do this, it performs an energy scan onmultiple channels (that is, frequencies) to detect energy
levels. You can use SD (Scan Duration) to adjust how long the device dwells on each channel during this
energy scan. The coordinator removes channels with excessive energy levels from its list of potential
channels to start on and then selects a channel at random to form the network on.

PAN ID selection
After completing the energy scan, the coordinator scans its list of potential channels (remaining
channels after the energy scan) to obtain a list of neighboring PANs. To do this, the coordinator sends
a beacon request (broadcast) transmission on each potential channel. All nearby coordinators and
routers that have already joined a Zigbee network respond to the beacon request by sending a
beacon back to the coordinator. The beacon contains information about which PAN the device is on,
including the PAN identifiers (16-bit and 64-bit). This scan (collecting beacons on the potential
channels) is typically called an active scan or PAN scan.
After the coordinator completes the channel and PAN scan, it selects a random channel and unused
16-bit PAN ID to start on.

Persistent data
Once a coordinator starts a network, it retains the following information through power cycle or reset
events:

n PAN ID
n Operating channel
n Security policy and frame counter value
n Child table (end device children that are joined to the coordinator)
n Binding table
n Group table

Zigbee networks Zigbee coordinator operation

Digi XBee® 3 Zigbee® RF Module 84

The coordinator retains this information indefinitely until it leaves the network. When the coordinator
leaves a network and starts a new network, the previous PAN ID, operating channel, link key table,
and child table data are lost.

Coordinator startup
The following table provides the network formation commands that the coordinator uses to form a
network.

Command Description

CE Must be set to 1 to specify that the device will act as a coordinator and form a
network.

ID Used to determine the 64-bit PAN ID. If set to 0 (default), a random 64-bit PAN ID will
be selected.

SC Determines the scan channels bitmask used by the coordinator when forming a
network. The coordinator will perform an energy scan on all enabled SC channels. It
will then perform a PAN ID scan.

SD Set the scan duration, or time that the router will listen for beacons on each channel.

ZS Set the Zigbee stack profile for the network.

EE Enable or disable security in the network.

KY If encryption is enabled, a preconfigured link key can be set. Any device with a
matching link key will be allowed to join when the join window is open. If KY is set to
0, a random link key will be assigned, and devices will have to be registered to join or
allowed to insecurely join using a default link key.

NK Set a preconfigured network key for secured networks. NK is only applicable to the
device with CE = 1 and defines the initial network key. In most situations you should
leave this value at 0.

EO Set the security policy for the network if encryption is enabled. EO defines whether
the coordinator should act as a centralized trust center or form the network as a
router in a distributed trust center network. You can also optionally allow insecure
devices to join using a well-known link key.

Configuration changes delay the start of network formation for five seconds after the last change.
Once the coordinator starts a network, the network configuration settings and child table data
persist through power cycles as mentioned in Persistent data.
When the coordinator has successfully started a network, it:

n Allows other devices to join the network for a time; see NJ (Node Join Time)
n Sets AI = 0
n Starts blinking the Associate LED
n Sends an API modem status frame (“coordinator started”) out the serial port when using API

mode

These behaviors are configurable using the following commands:

Zigbee networks Zigbee coordinator operation

Digi XBee® 3 Zigbee® RF Module 85

Command Description

NJ Sets the permit-join time on the coordinator, measured in seconds.

D5 Enables the Associate LED functionality.

LT Sets the Associate LED blink time when joined. If LT = 0, the default is 1 blink per 500
ms (coordinator) 250 ms (router/end device).

If any of the command values in the network formation commands table changes, the coordinator
leaves its current network and starts a new network, possibly on a different channel.

Note Command changes must be applied (AC or CN command) before taking effect.

Permit joining
You can use NJ (Node Join Time) to configure the permit joining attribute on the coordinator. By
default, the join window opens for 254 seconds, after which joining will not be allowed until the join
window opens again.

Joining temporarily enabled
Set NJ < 0xFF, to enable joining for only a number of seconds, based on the NJ parameter. Once the
XBee 3 Zigbee RF Module joins a network, the timer starts. The coordinator does not re-enable joining
if the device is power cycled or reset. The following actions restart the permit-joining timer:

n Changing NJ to a different value (and applying changes with the AC or CN commands).
n Pressing the Commissioning button twice.
n Issuing the CB command with a parameter of 2.

The last two actions enable joining for one minute if NJ is 0x0. Otherwise, the Commissioning button
and the CB2 command enable joining for NJ seconds.

Joining always enabled
If NJ = 0xFF, joining is permanently enabled.

Use this mode carefully. Once a network has been deployed, we strongly recommend that
the application consider disabling joining to prevent unwanted joins from occurring. An
always-open network operates outside of the Zigbee 3.0 specifications.

Reset the coordinator
When you reset or power cycle the coordinator, it checks its PAN ID, operating channel and stack
profile against the network configuration settings (ID, CH, ZS). It also verifies the saved security policy
against the security configuration settings (EE, NK, KY). If the coordinator's PAN ID, operating channel,
stack profile, or security policy is not valid based on its network and security configuration settings,
the coordinator leaves the network and attempts to form a new network based on its network
formation command values.
To prevent the coordinator from leaving an existing network, issue the WR command after all network
formation commands have been configured in order to retain these settings through power cycle or
reset events.

Zigbee networks Zigbee coordinator operation

Digi XBee® 3 Zigbee® RF Module 86

Leave a network
The following mechanisms cause the coordinator to leave its current PAN and start a new network
based on its network formation parameter values.

n Change the ID command such that the current 64-bit PAN ID is invalid.
n Change the SC command such that the current channel (CH) is not included in the channel

mask.
n Change the ZS or any of the security command values.
n Issue the NR0 command to cause the coordinator to leave.
n Issue the NR1 command to send a broadcast transmission, causing all devices in the network

to leave andmigrate to a different channel.
n Press the commissioning button four times or issue the CB command with a parameter of 4.

This restores the device to a default configuration state.
n Issue a network ZDO leave command.

Note Changes to ID, SC, ZS, and security command values only take effect when changes are applied
(AC or CN commands).

Replace a coordinator (security disabled only)
On rare occasions, it may become necessary to replace an existing coordinator in a network with a
new physical device. If security is not enabled in the network, you can configure a replacement XBee
coordinator with the PAN ID (16-bit and 64-bit), channel, and stack profile settings of a running
network in order to replace an existing coordinator.

Note Avoid having two coordinators on the same channel, stack profile, and PAN ID (16-bit and 64-bit)
as it can cause problems in the network. When replacing a coordinator, turn off the old coordinator
before starting the new coordinator.

To replace a coordinator, read the following commands from a device on the network:

Command Description

OP Read the operating 64-bit PAN ID.

OI Read the operating 16-bit PAN ID.

CH Read the operating channel.

ZS Read the stack profile.

Each of the commands listed above can be read from any device on the network. These parameters
will be the same on all devices in the network. After reading the commands from a device on the
network, program the parameter values into the new coordinator using the following commands.

Command Description

ID Set the 64-bit PAN ID to match the readOP value.

Zigbee networks Zigbee coordinator operation

Digi XBee® 3 Zigbee® RF Module 87

Command Description

II Set the initial 16-bit PAN ID to match the readOI value.

SC Set the scan channels bitmask to enable the read operating channel (CH command).
For example, if the operating channel is 0x0B, set SC to 0x0001. If the operating
channel is 0x17, set SC to 0x1000.

ZS Set the stack profile to match the read ZS value.

II is the initial 16-bit PAN ID. Under certain conditions, the Zigbee stack can change the 16-bit PAN ID
of the network. For this reason, you cannot save the II command using the WR command. Once II is
set, the coordinator leaves the network and starts on the 16-bit PAN ID specified by II.

Example: start a coordinator
1. Set CE (Device Role) to 1 to indicate to the local device that it should form a network. Use WR

(Write) to save the changes.
2. Set SC and ID to the desired scan channels and PAN ID values. The defaults are usually

sufficient.
3. If you change SC or ID from the default, issue the WR command to save the changes.
4. If you change SC or ID from the default, apply changes (make SC and ID changes take effect)

either by sending the AC command or by exiting AT Commandmode.
5. If an Associate LED has been connected, it starts blinking once the coordinator has selected a

channel and PAN ID and the network has started.
6. The API Modem Status frame (Coordinator Started) is sent out the serial port when using API

mode.
7. Reading the AI command (association status) returns a value of 0, indicating a successful

startup.
8. Reading the MY command (16-bit address) returns a value of 0, the Zigbee-defined 16-bit

address of the coordinator.

After startup, the coordinator allows joining based on its NJ value. We highly recommend that you
issue a WR command to write all applied settings to flash.

Example: replace a coordinator (security disabled)
1. Read the OP,OI, CH, and ZS commands on the running coordinator.
2. Set the CE, ID, SC, and ZS parameters on the new coordinator to match the existing

coordinator, followed byWR command to save these parameter values.
3. Turn off the running coordinator.
4. Set the II (Initial 16-bit PAN ID) parameter on the new coordinator to match the readOI value

on the old coordinator.
5. Wait for the new coordinator to start (AI = 0).

Zigbee networks Router operation

Digi XBee® 3 Zigbee® RF Module 88

Router operation
Routers must discover and join a valid Zigbee network before they can participate in a Zigbee
network. After a router has joined a network, it can allow new devices to join the network. It can also
route data packets and communicate with other devices on the network.

Discover Zigbee networks
To discover nearby Zigbee networks, the router performs a PAN (or active) scan, just like the
coordinator does when it starts a network. During the PAN scan, the router sends a beacon request
(broadcast) transmission on the first channel in its scan channels list. All nearby coordinators and
routers operating on that channel that are already part of a Zigbee network respond to the beacon
request by sending a beacon back to the router.
The beacon contains information about the PAN the nearby device is on, including the PAN identifier
(PAN ID), and whether or not joining is allowed. The router evaluates each beacon received on the
channel to determine if it finds a valid PAN. A PAN is valid if any of the following exist:

n Has a valid 64-bit PAN ID (PAN ID matches ID if ID > 0)
n Has the correct stack profile (ZS command)
n Allows joining the network

If the router does not find a valid PAN, it performs the PAN scan on the next channel in its scan
channels list and continues scanning until it finds a valid network, or until all channels have been
scanned. If the rounter scans all channels and does not discover a valid PAN, it scans all channels
again.
The Zigbee Alliance requires that certified solutions not send beacon request messages too
frequently. To meet certification requirements, the XBee firmware attempts nine scans per minute for
the first five minutes, and three scans per minute thereafter. If a valid PAN is within range of a joining
router, it typically discovers the PAN within a few seconds.

Join a network
Once the router discovers a valid network, it sends an association request to the device that sent a
valid beacon requesting a join on the Zigbee network. The device allowing the join then sends an
association response frame that either allows or denies the join.
When a router joins a network, it receives a 16-bit address from the device that allowed the join. The
device that allowed the join randomly selects the 16-bit address.

Authentication
In a network where security is enabled, the router must follow an authentication process. See Zigbee
security for a discussion on security and authentication.
After the router is joined (and authenticated, in a secure network), it can allow new devices to join the
network.

Persistent data
Once a router joins a network, it retains the following information through power cycle or reset
events:

Zigbee networks Router operation

Digi XBee® 3 Zigbee® RF Module 89

n PAN ID
n Operating channel
n Security policy and frame counter values
n Child table (end device children that are joined to the coordinator)
n Binding table
n Group table

The router retains this information indefinitely until it leaves the network. When the router leaves a
network, it loses the previous PAN ID, operating channel, and child table data.

Router joining
When the router powers on, if it is not already joined to a valid Zigbee network, it immediately
attempts to find and join a valid Zigbee network.
Set DJ (Disable Joining) to 1 to disable joining. You cannot write the DJ parameter with the WR
command, so a power cycle always clears the DJ setting.
The following commands control the router joining process.

Command Description

ID Sets the 64-bit PAN ID to join. Setting ID = 0 allows the router to join any 64-bit PAN
ID.

SC Set the scan channels bitmask that determines which channels a router scans to find
a valid network. Set SC on the router to match SC on the coordinator. For example,
setting SC to 0x281 enables scanning on channels 11, 18 and 20, in that order.

SD Set the scan duration, or time that the router listens for beacons on each channel.

ZS Set the stack profile on the device.

EE Enable or disable security in the network. This must be set to match the EE value
(security policy) of the coordinator.

KY Set the trust center link key. If set to 0 (default), the link key is expected to be
obtained (unencrypted) during joining.

EO If encryption is enabled (EE = 1), set the joining device's Encryption Options to match
the Encryption Options of the network.

Configuration changes delay the start of joining for five seconds after the last change.
Once the router joins a network, the network configuration settings and child table data persist
through power cycles as mentioned in Persistent data. If joining fails, read the status of the last join
attempt in the AI command register.
If any of the above command values change, when command register changes are applied (AC or CN
commands), the router leaves its current network and attempts to discover and join a new valid
network. When a Zigbee router has successfully joined a network, it:

n Allows other devices to join the network for a time
n Sets AI = 0
n Starts blinking the Associate LED

Zigbee networks Router operation

Digi XBee® 3 Zigbee® RF Module 90

n Sends an API modem status frame (associated) out the serial port when using API mode

You can configure these behaviors using the following commands:

Command Description

NJ Sets the permit-join time on the router, or the time that it allows new devices to join
the network, measured in seconds. Set NJ = 0xFF to always enable permit joining.

D5 Enables the Associate LED functionality.

LT Sets the Associate LED blink time when joined. The default is 2 blinks per second
(router).

Router network connectivity
Once a router joins a Zigbee network, it remains connected to the network on the same channel and
PAN ID unless it is forced to leave (see Leave a network). If the scan channels (SC), PAN ID (ID) and
security settings (EE, KY) do not change after a power cycle, the router remains connected to the
network after a power cycle.
If a router is physically moved out of range of the network it initially joined, make sure the application
includes provisions to detect if the router can still communicate with the original network. If
communication with the original network is lost, the application may choose to force the router to
leave the network. The XBee firmware includes two provisions to automatically detect the presence
of a network and leave if the check fails.

Power-On join verification
JV (Coordinator Join Verification) enables the power-on join verification check. If enabled, the XBee 3
Zigbee RF Module attempts to discover the 64-bit address of the coordinator when it first joins a
network. Once it has joined, it also attempts to discover the 64-bit address of the coordinator after a
power cycle event. If 3 discovery attempts fail, the router leaves the network and try to join a new
network. The default setting for Power-on join verification is disabled (JV defaults to 0).

Network watchdog
The NW (Network Watchdog Timeout) feature allows a powered router to verify the presence of a
coordinator if no communication events with the coordinator have occurred within a timeout period.
This timeout is specified in minutes using the NW command. The default setting for the network
watchdog feature is disabled (NW = 0) and can be configured for up to several days.
Anytime a router receives valid data from the coordinator or data collector, it clears the watchdog
timeouts counter and restarts the watchdog timer.

n RF data received from the coordinator
n RF data sent to the coordinator and an acknowledgment was received
n Many-to-one route request was received (from any device)
n Change the value of NW

If any of the events listed above occur during the watchdog period then no additional network traffic
will be generated. If the watchdog timer does expire (no valid data received for 1 NW time period), the
router attempts to initiate communication with the coordinator by sending an IEEE 64-bit address
discovery message to the coordinator. If the router cannot discover the address, it records one
watchdog timeout. After three consecutive network watchdog timeouts expire (3 * NW) and the
coordinator has not responded to the address discovery attempts, the router will enter one of three

Zigbee networks Router operation

Digi XBee® 3 Zigbee® RF Module 91

modes based on the configuration of DC (Joining Device Controls) bit 5 and DO (Miscellaneous Device
Options) bit 7:

1. No Network Locator (Leave Network): If neither DC bit 5 or DO bit 7 is set, the router will
immediately leave the network and begin searching for a network to join based on its
networking settings. If API mode is enabled, a network disassociatedmodem status frame
(0x03) will be emitted when the router leaves the network. If the router finds and joins a new
coordinator or the original coordinator, a joined network modem status frame (0x02) will be
emitted if API mode is enabled.

2. Network Locator with Network Leave: If DO bit 7 is set but DC bit 5 is not set, the behavior of
JV andNW are modified. The router will remain on the network until a new network is found.
The router starts scanning for a network across the channels of the Scan Channel mask (SC).
Scanning occurs at a random interval of between 90 and 135 seconds. If API mode is enabled, a
network watchdog scanning modem status frame (0x42) will be emitted when scanning
begins. If the device finds a network on the old channel with the same OI and operating ID, the
search mode ends. If the device finds a network with a new OI but satisfies the device's search
for a matching ID and ZS, the device leaves the old network and joins the new network with
the new OI. These leave and join actions will cause the router to emit a disassociated network
modem status (0x03) and a joined network modem status frame (0x02) if API mode is enabled.
This supports swapping or replacing a coordinator in a running network.

3. Network Locator with Rejoin: If DC bit 5 is set, the router will begin scanning the current
channel indefinitely in an attempt to find the coordinator on the original network or re-join the
coordinator if it has moved to a new network. If API mode is enabled, a network watchdog
scanning modem status frame (0x42) will be emitted when scanning begins. Scanning occurs at
a random interval of between 90 and 135 seconds. If it finds the coordinator which must have a
matching ID (extended PAN ID) with the same PAN ID (OI) or a new PAN ID, the router will
rejoin the coordinator even if the coordinator is configured with a NJ of 0 (joining disabled). If
the router finds the coordinator on the original network or rejoins coordinator on a new
network, a joined network modem status frame (0x02) will be emitted if API mode is enabled.

Leave a network
The following mechanisms cause the coordinator to leave its current PAN and start a new network
based on its network formation parameter values.

n Change the ID command such that the current 64-bit PAN ID is invalid.
n Change the SC command such that the current channel (CH) is not included in the channel

mask.
n Change the ZS or any of the security command values.
n Send the NR0 command to cause the coordinator to leave.
n Send the NR1 command to send a broadcast transmission, causing all devices in the network

to leave andmigrate to a different channel.
n Press the commissioning button four times or send the CB command with a parameter of 4.

This restores the device to a default configuration state.
n Send a network leave command.

Note Changes to ID, SC, ZS, and security command values only take effect when changes are applied
(AC or CN commands).

Zigbee networks End device operation

Digi XBee® 3 Zigbee® RF Module 92

Reset the router
When you reset or power cycle the router, it checks its PAN ID, operating channel and stack profile
against the network configuration settings (ID, SC, ZS). It also verifies the saved security policy is valid
based on the security configuration commands (EE, KY). If the router's PAN ID, operating channel,
stack profile, or security policy is invalid, the router leaves the network and attempts to join a new
network based on its network joining command values.
To prevent the router from leaving an existing network, issue the WR command after all network
joining commands have been configured; this retains the settings through power cycle or reset
events.

Example: join a network
After starting a coordinator that is allowing joins, the following steps cause a router to join the
network:

1. Set ID to the desired 64-bit PAN ID, or to 0 to join any PAN.
2. Set SC to the list of channels to scan to find a valid network.
3. Set the security settings to match the coordinator.
4. If you SC or ID from the default, apply changes (that is, make SC and ID changes take effect) by

issuing the AC or CN command.
5. The Associate LED starts blinking once the router has joined a PAN.
6. If the Associate LED is not blinking, read the AI command to determine the cause of join failure.
7. Once the router joins, the OP and CH commands indicate the operating 64-bit PAN ID and

channel the router joined.
8. The MY command reflects the 16-bit address the router received when it joined.
9. The API Modem Status frame (“Associated”) is sent out the serial port when using API mode.

10. The joined router allows other devices to join for a time based on its NJ setting.

End device operation
Similar to routers, end devices must discover and join a valid Zigbee network before they can
participate in the network. After an end device joins a network, it can communicate with other devices
on the network. Because end devices are battery powered and support low power (sleep) modes, they
cannot allow other devices to join or route data packets.

Discover Zigbee networks
End devices go through the same process as routers to discover networks by issuing a PAN scan. After
sending the broadcast beacon request transmission, the end device listens for a short time in order to
receive beacons sent by nearby routers and coordinators on the same channel. The end device
evaluates each beacon received on the channel to determine if it finds a valid PAN. A PAN is valid if any
of the following exist:

n Has a valid 64-bit PAN ID (PAN ID matches ID if ID > 0)
n Has the correct stack profile (ZS command)
n Allows joining the network
n Has capacity for additional end devices

Zigbee networks End device operation

Digi XBee® 3 Zigbee® RF Module 93

If the end device does not find a valid PAN, it performs the PAN scan on the next channel in its scan
channels list and continues this process until it finds a valid network, or until all channels have been
scanned. If the end device scan all channels and does not discover a valid PAN, it may enter a low
power sleep state and scan again later.
If scanning all SC channels fails to discover a valid PAN, XBee Zigbee devices attempt to enter a low
power state and retries scanning all SC channels after the device wakes from sleeping. If the device
cannot enter a low power state, it retries scanning all channels, similar to the router. To meet Zigbee
Alliance requirements, the end device attempts up to nine scans per minute for the first five minutes,
and three scans per minute thereafter.

Note The XBee Zigbee end device will not enter sleep until it has completed scanning all SC channels
for a valid network.

Join a network
Once the end device discovers a valid network, it joins the network, similar to a router, by sending an
association request (to the device that sent a valid beacon) to request a join on the Zigbee network.
The device allowing the join then sends an association response frame that either allows or denies the
join.
When an end device joins a network, it receives a 16-bit address from the device that allowed the join.
The device that allowed the join randomly selects the 16-bit address.

Parent child relationship
Since an end device may enter low power sleepmodes and not be immediately responsive, the end
device relies on the device that allowed the join to receive and buffer incoming messages on its behalf
until it is able to wake and receive those messages. The device that allowed an end device to join
becomes the parent of the end device, and the end device becomes a child of the device that allowed
the join.

End device capacity
Routers and coordinators maintain a table of all child devices that have joined called the child table.
This table is a finite size and determines how many end devices can join. If a router or coordinator has
at least one unused entry in its child table, the device has end device capacity. In other words, it can
allow one or more additional end devices to join. Zigbee networks have sufficient routers to ensure
adequate end device capacity.
The initial release of software on this platform supports up to 20 end devices when configured as a
coordinator or a router.
In Zigbee firmware, use the NC command (number of remaining end device children) to determine
how many additional end devices can join a router or coordinator. If NC returns 0, then the router or
coordinator device has no more end device capacity.

Note Because routers cannot sleep, there is no equivalent need for routers or coordinators to track
joined routers. There is no limit to the number of routers that can join a given router or coordinator
device and no “router capacity” metric.

Authentication
In a network where security is enabled, the end device must then go through an authentication
process. For more information, see Zigbee security.

Zigbee networks End device operation

Digi XBee® 3 Zigbee® RF Module 94

Persistent data
The end device can retain its PAN ID, operating channel, and security policy information through a
power cycle. However, since end devices rely heavily on a parent, the end device does an orphan scan
to try and contact its parent. If the end device does not receive an orphan scan response (coordinator
realignment command), it leaves the network and tries to discover and join a new network. When the
end device leaves a network, it loses the previous PAN ID and operating channel settings.

Orphan scans
When an end device comes up from a power cycle, it performs an orphan scan to verify it still has a
valid parent. The device sends the orphan scan as a broadcast transmission and contains the 64-bit
address of the end device. Nearby routers and coordinator devices that receive the broadcast check
their child tables for an entry that contains the end device's 64-bit address. If the devices find an entry
with a matching 64-bit address, they send a coordinator realignment command to the end device that
includes the 16-bit address of the end device, 16-bit PAN ID, operating channel, and the parent's 64-bit
and 16-bit addresses.
If the orphaned end device receives a coordinator realignment command, it joins the network.
Otherwise, it attempts to discover and join a valid network.

End device joining
When you power on an end device, if it is not joined to a valid Zigbee network, or if the orphan scan
fails to find a parent, the device attempts to find and join a valid Zigbee network.

Note Set the DJ command to 1 to disable joining. You cannot write the DJ parameter withWR, so a
power cycle always clears the DJ setting.

The following commands control the end device joining process.

Command Description

ID Sets the 64-bit PAN ID to join. Setting ID = 0 allows the router to join any 64-bit PAN
ID.

SC Set the scan channels bitmask that determines which channels an end device will
scan to find a valid network. SC on the end device should be set to match SC on the
coordinator and routers in the desired network. For example, setting SC to 0x281
enables scanning on channels 0x0B, 0x12, and 0x14, in that order.

SD Set the scan duration, or time that the end device will listen for beacons on each
channel.

ZS Set the stack profile on the device.

EE Enable or disable security in the network. This must be set to match the EE value
(security policy) of the coordinator.

KY Set the trust center link key. If set to 0 (default), the link key is expected to be
obtained (unencrypted) during joining.

EO If encryption is enabled (EE = 1), set the joining device's Encryption Options to match
the Encryption Options of the network.

Zigbee networks Channel scanning

Digi XBee® 3 Zigbee® RF Module 95

Once the end device joins a network, the network configuration settings persist through power cycles
as mentioned in Persistent data. If joining fails, read the status of the last join attempt in the AI
command register.
If any of these command values change when command register changes are applied, the end device
leaves its current network and attempts to discover and join a new valid network.
When a Zigbee end device has successfully started a network, it:

n Sets AI equal to 0
n Starts blinking the Associate LED if one has been connected to the device's ASSC pin (Micro pin

26/SMT pin 28/TH pin 15)
n Sends an API modem status frame (“associated”) out the serial port when using API mode
n Attempts to enter the sleepmode defined by the SM parameter

You can use the following commands to configure these behaviors:

Command Description

D5 Enables the Associate LED functionality.

LT Sets the Associate LED blink time when joined. Default is 2 blinks per second
(end devices).

SM, SP, ST, SN, SO,
ET

Parameters that configure the sleepmode characteristics. See End Device
configuration.

Parent connectivity
The XBee 3 Zigbee RF Module end device sends regular poll transmissions to its parent when it is
awake. These poll transmissions query the parent for any new received data packets. The parent
always sends a MAC layer acknowledgment back to the end device. The acknowledgment indicates
whether the parent has data for the end device.
If the end device does not receive an acknowledgment for three consecutive poll requests, it
considers itself disconnected from its parent and attempts to discover and join a valid Zigbee
network. For more information, see Manage End Devices.

Reset the end device
When the end device is reset or power cycled, if the orphan scan successfully locates a parent, the end
device then checks its PAN ID, operating channel and stack profile against the network configuration
settings (ID, SC, ZS). It also verifies the saved security policy is valid based on the security
configuration commands (EE, EO, KY). If the end device's PAN ID, operating channel, stack profile, or
security policy is invalid, the end device will leave the network and attempt to join a new network
based on its network joining command values.
To prevent the end device from leaving an existing network, the WR command should be issued after
all network joining commands have been configured in order to retain these settings through power
cycle or reset events.

Channel scanning
Routers and end devices must scan one or more channels to discover a valid network to join. When a
join attempt begins, the device sends a beacon request transmission on the lowest channel specified

Zigbee networks Channel scanning

Digi XBee® 3 Zigbee® RF Module 96

in the SC (Scan Channels) bitmask. If the device finds a valid PAN on the channel, it attempts to join
the PAN on that channel. Otherwise, if the device does not find a valid PAN on the channel, it attempts
scanning on the next higher channel in the SC bitmask.
The device continues to scan each channel (from lowest to highest) in the SC bitmask until it finds a
valid PAN or all channels have been scanned. Once the device scans all channels, the next join attempt
starts scanning on the lowest channel specified in the SC bitmask.
For example, if the SC command is set to 0x400F, the device starts scanning on channel 11 (0x0B) and
scans until it finds a valid beacon, or until it scans channels 11, 12, 13, 14, and 25 have been scanned
(in that order).
Once an XBee router or end device joins a network on a given channel, if the XBee device receives a
network leave command (see Leave a network), it leaves the channel it joined on and continues
scanning on the next higher channel in the SC bitmask.
For example, if the SC command is set to 0x400F and the device joins a PAN on channel 12 (0x0C), if
the XBee 3 Zigbee RF Module leaves the channel, it starts scanning on channel 13, followed by
channels 14 and 25 if it does not find a valid network. Once all channels have been scanned, the next
join attempt starts scanning on the lowest channel specified in the SC bitmask.

Manage multiple Zigbee networks
In some applications, multiple Zigbee networks may exist in proximity of each other. The application
may need provisions to ensure the device joins the desired network. There are a number of features in
Zigbee to manage joining among multiple networks. These include the following:

n PAN ID filtering
n Preconfigured security keys
n Permit joining
n Application messaging

Filter PAN ID
Set ID (Extended PAN ID) to a non-zero value to configure the XBee 3 Zigbee RF Module with a fixed
PAN ID.
If you set the PAN ID to a non-zero value, the device will only join a network with the same PAN ID.

Configure security keys
Similar to PAN ID filtering, this method requires that you install a known security key on a router to
ensure it joins a Zigbee network with the same security key.

1. Use EE (Encryption Enable) to enable security.
2. Use KY (AES Encryption Key) to set the preconfigured link key to a non-zero value.

Now the XBee router or end device will only join a network with the same security key.

Prevent unwanted devices from joining
You can disable the permit-joining parameter in a network to prevent unwanted devices from joining.
When you need to add a new device to a network, enable permit-joining for a short time on the
desired network.
In the XBee firmware:

Zigbee networks Channel scanning

Digi XBee® 3 Zigbee® RF Module 97

1. Set NJ (Node Join Time) to a value less than 0xFF on all routers and coordinator devices to
restrict joining (recommended).

2. Use the Commissioning pushbutton or CB (Commissioning Pushbutton) to allow joining for a
short time; for more information, see Network commissioning and diagnostics.

Application messaging framework
If none of the previous mechanisms are feasible, you can build a messaging framework between the
coordinator and devices that join its network into the application. For example, the application code in
joining devices could send a transmission to the coordinator after joining a network, and wait to
receive a defined reply message. If the application does not receive the expected response message
after joining, it could force the device to leave and continue scanning; see NR (Network Reset).

Transmission, addressing, and routing

Addressing 99
Data transmission 99
Binding transmissions 102
Multicast transmissions 102
Fragmentation 103
Data transmission examples 103
RF packet routing 105
Encrypted transmissions 115
Maximum RF payload size 115
Throughput 117
ZDO transmissions 117
Transmission timeouts 146

Digi XBee® 3 Zigbee® RF Module 98

Transmission, addressing, and routing Addressing

Digi XBee® 3 Zigbee® RF Module 99

Addressing
All Zigbee devices have two different addresses, a 64-bit and a 16-bit address. This section describes
the characteristics of each.

64-bit device addresses
The 64-bit address is a device address which is unique to each physical device. It is sometimes also
called the MAC address or extended address and is assigned during the manufacturing process. The
first three bytes of the 64-bit address is a Organizationally Unique Identifier (OUI) assigned to the
manufacturer by the IEEE. The OUI of XBee devices is 0x0013A2.

16-bit device addresses
A device receives a 16-bit address when it joins a Zigbee network. For this reason, the 16-bit address
is also called the network address. The 16-bit address of 0x0000 is reserved for the coordinator. All
other devices receive a randomly generated address from the router or coordinator device that allows
the join. The 16-bit address can change under certain conditions:

n An address conflict is detected where two devices are found to have the same 16-bit address
n A device leaves the network and later joins (it can receive a different address)

All Zigbee transmissions are sent using the source and destination 16-bit addresses. The routing
tables on Zigbee devices also use 16-bit addresses to determine how to route data packets through
the network. However, since the 16-bit address is not static, it is not a reliable way to identify a
device.
To solve this problem, the 64-bit destination address is often included in data transmissions to
guarantee data is delivered to the correct destination. The Zigbee stack can discover the 16-bit
address, if unknown, before transmitting data to a remote.

Application layer addressing
Zigbee devices support multiple application profiles, cluster IDs, and endpoints (for more information,
see Zigbee application layers: in depth). Application layer addressing allows data transmissions to be
addressed to specific profile IDs, cluster IDs, and endpoints. Application layer addressing is useful if an
application must do any of the following:

n Interoperate with other Zigbee devices outside of the Digi application profile.
n Use service and network management capabilities of the ZDO.
n Operate on a public application profile such as Home Automation or Smart Energy.

API mode provides a simple yet powerful interface that easily sends data to any profile ID, endpoint,
and cluster ID combination on any device in a Zigbee network.

Data transmission
You can send Zigbee data packets as either unicast or broadcast transmissions. Unicast transmissions
route data from one source device to one destination device, whereas broadcast transmissions are
sent to many or all devices in the network.

Transmission, addressing, and routing Data transmission

Digi XBee® 3 Zigbee® RF Module 100

Broadcast transmissions
Broadcast transmissions within the Zigbee protocol are intended to be propagated throughout the
entire network such that all nodes receive the transmission. To accomplish this, the coordinator and
all routers that receive a broadcast transmission retransmits the packet three times.

Note When a router or coordinator delivers a broadcast transmission to an end device child, the
transmission is only sent once (immediately after the end device wakes and polls the parent for any
new data). For more information, see Parent operation.

Each node that transmits the broadcast also creates an entry in a local broadcast transmission table.
This entry keeps track of each received broadcast packet to ensure the packets are not transmitted
endlessly. Each entry persists for 8 seconds, and the broadcast transmission table holds 8 entries,
effectively limiting network broadcast transmissions to once per second.
For each broadcast transmission, the Zigbee stack reserves buffer space for a copy of the data packet
that retransmits the packet as needed. Large broadcast packets require more buffer space. Users
cannot change any buffer spacing; information on buffer space is for general knowledge only. The
XBee 3 Zigbee RF Module handles buffer spacing automatically.
Since each device in the network retransmits broadcast transmissions, use broadcast messages
sparingly to avoid network congestion.

Unicast transmissions
Unicast transmissions are sent from one source device to another destination device. The destination
device could be an immediate neighbor of the source, or it could be several hops away. Unicast
transmissions sent along a multiple hop path require some means of establishing a route to the
destination device. For more information, see RF packet routing.

Address resolution
Each device in a Zigbee network has both a 16-bit (network) address and a 64-bit (extended) address.
The 64-bit address is unique and assigned to the device during manufacturing, and the 16-bit address
is obtained after joining a network. The 16-bit address can also change under certain conditions.
When sending a unicast transmission, the Zigbee network layer uses the 16-bit address of the
destination and each hop to route the data packet. If you do not know the 16-bit address of the

Transmission, addressing, and routing Data transmission

Digi XBee® 3 Zigbee® RF Module 101

destination, the Zigbee stack includes a discovery provision to automatically discover the destination
16-bit address of the device before routing the data.
To discover a 16-bit address of a remote, the device initiating the discovery sends a broadcast address
discovery transmission. The address discovery broadcast includes the 64-bit address of the remote
device with the 16-bit address being requested. All nodes that receive this transmission check the 64-
bit address in the payload and compare it to their own 64-bit address. If the addresses match, the
device sends a response packet back to the initiator. This response includes the remote's 16-bit
address. When the device receives the discovery response, the initiator transmits the data.
You can address frames using either the extended or the network address. If you use the extended
address form, set the 16-bit network address field to 0xFFFE (unknown). If you use the 16-bit network
address form, set the 64-bit extended address field to 0xFFFFFFFFFFFFFFFF (unknown).
If you use an invalid 16-bit address as a destination address, and the 64-bit address is unknown
(0xFFFFFFFFFFFFFFFF), the modem status message shows a delivery status code of 0x21 (network
ack failure) and a discovery status of 0x00 (no discovery overhead). If you use a non-existent 64-bit
address as a destination address, and the 16-bit address is unknown (0xFFFE), the device attempts
address discovery and the modem status message shows a delivery status code of 0x24 (address not
found) and a discovery status code of 0x01 (address discovery was attempted).

Address table
Each Zigbee device maintains an address table that maps a 64-bit address to a 16-bit address. When a
transmission is addressed to a 64-bit address, the Zigbee stack searches the address table for an
entry with a matching 64-bit address to determining the destination's 16-bit address. If the Zigbee
stack does not find a known 16-bit address, it performs address discovery to discover the device's
current 16-bit address.

64-bit address 16-bit address

0013 A200 4000 0001 0x4414

0013 A200 400A 3568 0x1234

0013 A200 4004 1122 0xC200

0013 A200 4002 1123 0xFFFE (unknown)

The XBee 3 Zigbee RF Module supports up to 20 address table entries. For applications where a single
device (for example, coordinator) sends unicast transmissions to more than 10 devices, the
application implements an address table to store the 16-bit and 64-bit addresses for each remote
device. Use API mode for any XBee device that sends data to more than 10 remotes. The application
can then send both the 16-bit and 64-bit addresses to the XBee device in the API transmit frames
which significantly reduces the number of 16-bit address discoveries and greatly improves data
throughput.
If an application supports an address table, the size should be larger than the maximum number of
destination addresses the device communicates with. Each entry in the address table should contain a
64-bit destination address and its last known 16-bit address.
When sending a transmission to a destination 64-bit address, the application searches the address
table for a matching 64-bit address. If it finds a match, the application populates the 16-bit address
into the 16-bit address field of the API frame. If it does not find a match, set the 16-bit address to
0xFFFE (unknown) in the API transmit frame. The API provides indication of a remote device's 16-bit
address in the following frames:

Transmission, addressing, and routing Binding transmissions

Digi XBee® 3 Zigbee® RF Module 102

n All receive data frames
n Rx Data (0x90)
n Rx Explicit Data (0x91)
n I/O Sample Data (0x92)
n Node Identification Indicator (0x95)
n Route Record Indicator (0xA1) and so forth
n Transmit status frame (0x8B)

Group table
Each router and the coordinator maintain a persistent group table. Each entry contains the following:

n Endpoint value
n Two byte group ID
n Optional name string of zero to 16 ASCII characters
n Index into the binding table

More than one endpoint may be associated with a group ID, andmore than one group ID may be
associated with a given endpoint. The capacity of the group table is 16 entries.
The application always updates the 16-bit address in the address table when it receives one of the
frames to ensure the table has the most recently known 16-bit address. If a transmission failure
occurs, the application sets the 16-bit address in the table to 0xFFFE (unknown).

Binding transmissions
Binding transmissions use indirect addressing to send one or more messages to other destination
devices. The device handles an Explicit Addressing Command Request - 0x11 using the Indirect Tx
Option (0x04) as a binding transmission request.

Multicast transmissions
XBee modules use multicast transmissions to broadcast a message to destination devices that have
active endpoints associated with a common group ID. The device handles an Explicit Addressing
Command Request - 0x11 using the Multicast Tx Option (0x08) as a multicast transmission request.

Address resolution
The 64 bit destination address value does not matter and we recommend that it be set to
0xFFFFFFFFFFFFFFFF. Set the 16 bit destination address value to the destination groupID.

Address resolution
The XBee 3 Zigbee RF Module use the source endpoint and cluster ID values of a binding transmission
as keys to lookupmatching binding table entries. For each matching binding table entry, the type field
of the entry indicates whether to send a unicast or a multicast message. In the case of a unicast
entry, the transmission request is updated with the Destination Endpoint and MAC Address, and
unicast to its destination. In the case of a multicast entry, the device updates the message using the
two least significant bytes of the Destination MAC Address as the groupID, andmulticast to its
destinations.

Transmission, addressing, and routing Fragmentation

Digi XBee® 3 Zigbee® RF Module 103

Binding table
Each router and coordinator maintain a persistent binding table to map source endpoint and cluster
ID values into 64 bit destination address and endpoint values. The capacity of the binding table is 16
entries.

Fragmentation
Each unicast transmission may support up to 84 bytes of RF payload, although enabling security or
using source routing can reduce this number. For more information, see NP (Maximum Packet
Payload Bytes). However, the XBee Zigbee firmware supports a Zigbee feature called fragmentation
that allows a single large data packet to be broken up into multiple RF transmissions and
reassembled by the receiver before sending data out its serial port.

The transmit frame can include up to 255 bytes of data broken up into multiple transmissions and
reassembled on the receiving side. If one or more of the fragmentedmessages are not received by
the receiving device, it drops the entire message, and the sender indicates a transmission failure in
Extended Transmit Status - 0x8B.
Applications that do not wish to use fragmentation should avoid sending more than the maximum
number of bytes in a single RF transmission—see Maximum RF payload size.
If you use the D6 command to enable RTS flow control on the receiving device it receives a
fragmentedmessage; it ignores RTS flow control.

Note Broadcast transmissions do not support fragmentation. Maximum payload size = up to 92 bytes.

Data transmission examples
This section provides examples for data transmission.

Send a packet in Transparent mode
To send a data packet in Transparent mode (AP = 0), set the DH and DL commands to match the 64-
bit address of the destination device. DHmust match the upper 4-bytes, and DL must match the lower
4 bytes. Since the coordinator always receives a 16-bit address of 0x0000, a 64-bit address of
0x0000000000000000 is the coordinator's address (in Zigbee firmware). The default values of DH and
DL are 0x00, which sends data to the coordinator.

Example: Send a transmission to the coordinator.
In this example, a '\r' refers to a carriage return character.

Transmission, addressing, and routing Data transmission examples

Digi XBee® 3 Zigbee® RF Module 104

A router or end device can send data in two ways. First, set the destination address (DH and DL
commands) to 0x00.

1. Enter Commandmode (+++).
2. After receiving anOK\r, issue the following commands:

n ATDH0\r
n ATDL0\r
n ATCN\r

3. Verify that each of the three commands returned anOK\r response.
4. After setting these command values, all serial characters received on the UART are sent as a

unicast transmission to the coordinator.

Alternatively, if the coordinator's 64-bit address is known, you can set DH and DL to the coordinator's
64-bit address. Suppose the coordinator's address is 0x0013A200404A2244.

1. Enter Commandmode (+++)
2. After receiving anOK\r, issue the following commands:

a. ATDH13A200\r
b. ATDL404A2244\r
c. ATCN\r

3. Verify that each of the three commands returned anOK\r response.
4. After setting these command values, all serial characters received on the UART are sent as a

unicast transmission to the coordinator.

Send data in API mode
API mode is used exclusively for outgoing and incoming messages when the AP parameter is non-zero.
Use the transmit request, or explicit transmit request frame (0x10 and 0x11 respectively) to send
data to the coordinator. The 64-bit address can either be set to 0x0000000000000000, or to the 64-bit
address of the coordinator. The 16-bit address should be set to 0xFFFE when using the 64-bit address
of all 0x00s.
To send an ASCII 1 to the coordinator's 0x00 address, use the following API frame:
7E 00 0F 10 01 0000 0000 0000 0000 FFFE 00 00 31 C0
If you use the explicit transmit frame, set the the cluster ID to 0x0011, the profile ID to 0xC105, and
the source and destination endpoints to 0xE8. These are the recommended defaults for data
transmissions in the Digi profile.
You can send the same transmission using the following explicit transmit frame:
7E 00 15 11 01 0000 0000 0000 0000 FFFE E8 E8 0011 C105 00 00 31 18
The 16-bit address is set to 0xFFFE. This is required when sending to a 64-bit address of 0x00s.
Suppose the coordinator's 64-bit address is 0x0013A200404A2244. The following transmit request API
frame (0x10) sends an ASCII 1 to the coordinator:
7E 00 0F 10 01 0013 A200 404A 2244 0000 0000 31 18

Example: Send a broadcast transmission
In this example, a '\r' refers to a carriage return character.

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 105

Perform the following steps to configure a broadcast transmission:

1. Enter Commandmode (+++)
2. After receiving anOK\r, issue the following commands:

n ATDH0\r
n ATDLffff\r
n ATCN\r

3. Verify that each of the three commands returned anOK\r response.
4. After setting these command values, all serial characters are sent as a broadcast transmission.

API frame examples
A transmit request API frame (0x10) can send an ASCII 1 in a broadcast transmission using the
following API frame:
7E 00 0F 10 01 0000 0000 0000 FFFF FFFE 00 00 31 C2
The destination 16-bit address is set to 0xFFFE for broadcast transmissions.

Example: Send an indirect (binding) transmission.
This example uses the explicit transmit request frame (0x11) to send a transmission using indirect
addressing through the binding table. It assumes the binding table has already been set up to map a
source endpoint of D5 and cluster ID of 0x0001 to a destination endpoint and 64 bit destination
address. The message data is a manufacturing specific profile message using profile ID 0xC105,
command ID 0x00, a ZCL Header of 151E10, transaction number EE, and a ZCL payload of
000102030405:
7E 00 1E 11 01 FF FF FF FF FF FF FF FF FF FF D5 D5 00 01 C1 05 00 04 15 1E 10 EE 00 01 02 03 04
05 42

Note The 64 bit destination address has been set to all 0xFF values, and the destination endpoint set
to 0xFF. The Tx Option 0x04 indicates indirect addressing. The 64 bit destination address and
destination endpoint are completed by looking up data associated with binding table entries. This
matches the following example.

Example: Send a multicast (group ID) broadcast.
This example uses the explicit transmit request frame (0x11) to send a transmission using
multicasting. It assumes the destination devices already have their group tables set up to associate
an active endpoint with the group ID (0x1234) of the multicast transmission. The message data is a
manufacturing specific profile message using profile ID 0xC105 command ID 0x00, a ZCL Header of
151E10, transaction number EE, and a ZCL payload of 000102030405:
7E 00 1E 11 01 FF FF FF FF FF FF FF FF 12 34 D5 D5 00 01 C1 05 00 08 15 1E 10 EE 00 01 02 03 04
05 F6

Note The 64 bit destination address has been set to all 0xFF values, and the destination endpoint set
to 0xFE. The Tx Option 0x08 indicates use of multicast (group) addressing.

RF packet routing
Unicast transmissions may require some type of routing. Zigbee includes several different methods to
route data, each with its own advantages and disadvantages as summarized in the following table.

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 106

Routing
approach Description When to use

Ad hoc On-
demand
Distance Vector
(AODV) Mesh
Routing

Routing paths are created between source and
destination, possibly traversing multiple nodes
(“hops”). Each device knows where to send data next
to eventually reach the destination.

Use in networks that will
not scale beyond about
40 destination devices.

Many-to-One
Routing

A single broadcast transmission configures reverse
routes on all devices into the device that sends the
broadcast.

Useful whenmany
remote devices must
send data to a single
gateway or collector
device.

Source Routing Data packets include the entire route the packet
should traverse to get from source to destination.

Improves routing
efficiency in large
networks (over 40
remote devices).

Note End devices do not make use of these routing protocols. Rather, an end device sends a unicast
transmission to its parent and allows the parent to route the data packet in its behalf.

Note To revert from Many-to-One routing to AODV routing, a network must first do a network reset
(NR).

Link status transmission
Before discussing the various routing protocols, it is worth understanding the primary mechanism in
Zigbee for establishing reliable bi-directional links. This mechanism is especially useful in networks
that may have a mixture of devices with varying output power and/or receiver sensitivity levels.
Each coordinator or router device periodically sends a link status message as a 1-hop broadcast
transmission, received only by one-hop neighbors. The link status message contains a list of
neighboring devices and incoming and outgoing link qualities for each neighbor. Using these
messages, neighboring devices determines the quality of a bi-directional link with each neighbor and
uses that information to select a route that works well in both directions.
For example, consider a network of two neighboring devices that send periodic link status messages.
Suppose that the output power of device A is +18 dBm, and the output power of device B is +3 dBm
(considerably less than the output power of device A). The link status messages might indicate the
following:

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 107

This mechanism enables devices A and B to recognize that the link is not reliable in both directions
and select a different neighbor when establishing routes. Such links are called asymmetric links,
meaning the link quality is not similar in both directions.
When a router or coordinator device powers on, it sends link status messages every couple seconds to
attempt to discover link qualities with its neighbors quickly. After being powered on for some time,
the link status messages are sent at a much slower rate, about every 3-4 times per minute.

AODV mesh routing
Zigbee employs mesh routing to establish a route between the source device and the destination.
Mesh routing allows data packets to traverse multiple nodes (hops) in a network to route data from a
source to a destination. Routers and coordinators can participate in establishing routes between
source and destination devices using a process called route discovery. The Route discovery process is
based on the Ad-hoc On-demand Distance Vector routing (AODV) protocol.
Sample transmission through a mesh network:

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 108

AODV routing algorithm
Routing under the AODV protocol uses tables in each node that store the next hop (intermediary node
between source and destination nodes) for a destination node. If a next hop is unknown, route
discovery takes place to find a path. Since only a limited number of routes can be stored on a router,
route discovery takes place more often on a large network with communication between many
different nodes.

Node Destination address Next hop address

R3 Router 6 Coordinator

C Router 6 Router 5

R5 Router 6 Router 6

When a source node discovers a route to a destination node, it sends a broadcast route request
command. The route request command contains the source network address, the destination
network address and a path cost field (a metric for measuring route quality). As the route request
command propagates through the network (see Broadcast transmissions), each node that re-
broadcasts the message updates the path cost field and creates a temporary entry in its route
discovery table.
The following graphic is a sample route request (broadcast) transmission where R3 is trying to
discover a route to R6:

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 109

When the destination node receives a route request, it compares the ‘path cost’ field against
previously received route request commands. If the path cost stored in the route request is better
than any previously received, the destination node transmits a route reply packet to the node that
originated the route request. Intermediate nodes receive and forward the route reply packet to the
source node (the node that originated route request).
The following graphic is a sample route reply (unicast) where R6 sends a route reply to R3:

Note R6 could sendmultiple replies if it identifies a better route.

Retries and acknowledgments
Zigbee includes acknowledgment packets at both the Mac and Application Support (APS) layers. When
data is transmitted to a remote device, it may traverse multiple hops to reach the destination. As the
device transmits data from one node to its neighbor, it transmits an acknowledgment packet (Ack) in
the opposite direction to indicate that the transmission was successfully received. If the Ack is not
received, the transmitting device retransmits the data, up to four times.
This Ack is called the Mac layer acknowledgment. In addition, the device that originated the
transmission expects to receive an acknowledgment packet (Ack) from the destination device. This
Ack traverses the same path the data traversed, but in the opposite direction. If the originator fails to
receive this Ack, it retransmits the data, up to two times until it receives an Ack. This Ack is called the
Zigbee APS layer acknowledgment.

Note Refer to the Zigbee specification for more details.

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 110

Many-to-One routing
In networks where many devices must send data to a central collector or gateway device, AODV mesh
routing requires significant overhead. If every device in the network had to discover a route before it
could send data to the data collector, the network could easily become inundated with broadcast
route discovery messages.
Many-to-one routing is an optimization for these kinds of networks. Rather than require each device
to do its own route discovery, the device sends a single many-to-one broadcast transmission from the
data collector to establish reverse routes on all devices.
The many-to-one broadcast is a route request message with the target discovery address set to the
address of the data collector. Devices that receive this route request create a reverse many-to-one
routing table entry to create a path back to the data collector. The Zigbee stack on a device uses
historical link quality information about each neighbor to select a reliable neighbor for the reverse
route.
When a device sends data to a data collector, and it finds a many-to-one route in its routing table, it
transmits the data without performing a route discovery. Send the many-to-one route request
periodically to update and refresh the reverse routes in the network.
Applications that require multiple data collectors can also use many-to-one routing. If more than one
data collector device sends a many-to-one broadcast, devices create one reverse routing table entry
for each collector.
The Zigbee firmware uses AR (Aggregate Routing Notification) to enable many-to-one broadcasting on
a device. AR sets a time interval (measured in 10 second units) for sending the many to one broadcast
transmission.

High/Low RAM Concentrator mode
When Many to One (MTO) requests are broadcast, DO = 40 (bit 6) determines if the concentrator is
operating in high or low RAM mode. High RAM mode indicates to the network that the concentrator
has enough memory to store source routes for the whole network, and remote nodes may stop
sending route records after the concentrator has successfully received one. Low RAM mode indicates
to the network that the concentrator lacks RAM to store route records, and that route records be
sent to the concentrator to precede every inbound APS unicast message. If you have a network with
more than forty devices or will be using a Digi gateway, we recommend operating in low RAM
concentrator mode and externally manage source routing.
A device will become a concentrator when AR < 0xFF or when acting as a Centralized Trust Center.

Source routing
In applications where a device must transmit data to many remotes, AODV routing requires
performing one route discovery for each destination device to establish a route. If there are more
destination devices than there are routing table entries, new routes overwrite established AODV
routes, causing route discoveries to occur more regularly. This can result in larger packet delays and
poor network performance.
Zigbee source routing helps solve these problems. In contrast to many-to-one routing that establishes
routing paths from many devices to one data collector, source routing allows the collector to store
and specify routes for many remotes.
To use source routing, a device must use the API mode, and it must send periodic many-to-one route
request broadcasts (AR command) to create a many-to-one route to it on all devices. When remote
devices send RF data using a many-to-one route, they first send a route record transmission. The
route record transmission is unicast along the many-to-one route until it reaches the data collector.
As the route record traverses the many-to-one route, it appends the 16-bit address of each device in

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 111

the route into the RF payload. When the route record reaches the data collector, it contains the
address of the sender, and the 16-bit address of each hop in the route. The data collector can store
the routing information and retrieve it later to send a source routed packet to the remote as shown in
the following images.

The data collector sends a many-to-one route request broadcast to create reverse routes on all
devices.

A remote device sends an RF data packet to the data collector. This is prefaced by a route record
transmission to the data collector.

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 112

After obtaining a source route, the data collector sends a source routed transmission to the remote
device.

Acquire source routes
Acquiring source routes requires the remote devices to send a unicast to a data collector (device that
sends many-to-one route request broadcasts). There are several ways to force remotes to send route
record transmissions.

1. If the application on remote devices periodically sends data to the data collector, each
transmission forces a route record to occur.

2. The data collector can issue a network discovery command (ND command) to force all XBee
devices to send a network discovery response. A route record prefaces each network discovery
response.

3. You can enable periodic I/O sampling on remotes to force them to send data at a regular rate.
A route record prefaces each I/O sample. For more information, see Analog and digital I/O
lines.

4. If the NI string of the remote device is known, the DN command can be issued with the NI
string of the remote in the payload. The remote device with a matching NI string would send a
route record and a DN response.

Store source routes
When a data collector receives a route record, it sends it out the serial port as a Route Record
Indicator - 0xA1. To use source routing, the application receives these frames and stores the source
route information.

Send a source routed transmission
To send a source routed transmission, the application must send a Create Source Route - 0x21 to the
XBee 3 Zigbee RF Module to create a source route in its internal source route table. After sending the
Create Source Route frame, the application can send data transmission or remote command request
frames as needed to the same destination, or any destination in the source route. Once data must be
sent to a new destination (a destination not included in the last source route), the application must
first send a new Create Source Route - 0x21.

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 113

Note If a Create Source Route API frame does not precede the data frames, you may encounter data
loss.

The XBee 3 Zigbee RF Module can buffer one source route that includes up to 11 hops (excluding
source and destination). For example, suppose a network exists with a coordinator and 5 routers (R1,
R2, R3, R4, R5) with known source routes as shown in the following image.

To send a source-routed packet to R3, the application sends a Create Source Route API frame (0x21)
to the XBee, with a destination of R3, and 2 hops (R1 and R2). If the 64- bit address of R3 is
0x0013A200 404a1234 and the 16-bit addresses of R1, R2, and R3 are:

Device 16-bit address

R1 0xAABB

R2 0xCCDD

R3 0xEEFF

The Create Source Route API frame would be:
7E 0012 21 00 0013A200 404A1234 EEFF 00 02 CCDD AABB 5C

Field composition

0x0012 length

0x21 API ID (create source route)

0x00 frame ID (set to 0 always)

0x0013A200 404A1234 64-bit address of R3 (destination)

Transmission, addressing, and routing RF packet routing

Digi XBee® 3 Zigbee® RF Module 114

0xEEFF 16-bit address of R3 (destination)

0x00 Route options (set to 0)

0x02 Number of intermediate devices in the source route

0xCCDD Address of furthest device (1-hop from target)

0xAABB Address of next-closer device

0x5C Checksum (0xFF - SUM (all bytes after length))

Repair source routes
It is possible for a network to have an existing source route fail (for example, a device in the route
moves or goes down). If a device goes down in a source routed network, all routes that used the
device will be broken.
As mentioned previously, source routing must be used with many-to-one routing. A device that uses
source routing must also send a periodic many-to-one broadcast in order to keep routes fresh. If a
source route breaks, remote devices send in new route record transmissions to the data collector to
provide it with a new source route. This requires that remote devices periodically send data
transmissions into the data collector. For more information, see Acquire source routes.

Retries and acknowledgments
Zigbee includes acknowledgment packets at both the Mac and Application Support (APS) layers. When
data transmits to a remote device, it may traverse multiple hops to reach the destination. As data
transmits from one node to its neighbor, an acknowledgment packet (Ack) transmits in the opposite
direction to indicate that the transmission was successfully received. If the transmitting device does
not receive the Ack, it retransmits the data up to four times. This Ack is called the Mac layer
acknowledgment.
In addition, the device that originated the transmission expects to receive an acknowledgment packet
(Ack) from the destination device. This Ack traverses the same path that the data traversed, but in the
opposite direction. If the originator fails to receive this Ack, it retransmits the data, up to two times
until an Ack is received. This Ack is called the Zigbee APS layer acknowledgment.

Note Refer to the Zigbee specification for more details.

Disable MTO routing
To disable MTO (many-to-one) routing in a network, first reconfigure the AR setting on the aggregator
and then broadcast a network wide power reset to rebuild the routing tables.

1. Set AR on the aggregator to 0xFF.
2. Complete an AC command to enact the change.
3. Complete a WR command if the saved configuration setting value for AR is not 0xFF.

This ends the periodic broadcast of aggregator messages if the previous setting was 0x01 - 0xFE, and
prevents a single broadcast after a power reset if the previous setting was 0x00. Broadcast a FR
remote command to the network and wait for the network to reform. This removes the aggregator's
status as an aggregator from the network's routing tables so that no more route records will be sent
to the aggregator.

Transmission, addressing, and routing Encrypted transmissions

Digi XBee® 3 Zigbee® RF Module 115

Disable route records
If an aggregator collects route records from the nodes of the network and no longer needs route
records sent (which consume network throughput) :

1. Set Bit 6 of DO to Enable High RAM Concentrator mode. High RAM mode means the aggregator
has sufficient memory to hold route records for its potential destinations.

2. Set AR to 0x00 for a one-time broadcast (which some nodes might miss), or a value in the
range of 0x01 to 0xFE (in units of 10 seconds) to periodically send a broadcast to inform the
network that the aggregator is operating in High RAM Concentrator mode and no longer needs
to receive route records.

3. Use Create Source Route - 0x21 to load the route record for a destination into the local
device's source route table.

4. Send a unicast to the destination. The route record embeds in the payload and determines the
sequence of routers to use in transmitting the unicast to the destination. After receiving the
unicast, the destination no longer sends route records to the aggregator, now that it has
confirmed the High RAM Concentrator aggregator 'knows' its route record.

Clear the source route table
To clear the source route table, change the AR setting from a non-0xFF setting to 0xFF and complete
an AC command. To re-establish periodic aggregator broadcasts, change the AR setting to a non-0xFF
setting and complete an AC command.

Encrypted transmissions
Encrypted transmissions are routed similar to non-encrypted transmissions with one exception. As an
encrypted packet propagates from one device to another, each device decrypts the packet using the
network key and authenticates the packet by verifying packet integrity. It then re-encrypts the
packet with its own source address and frame counter values and sends the message to the next hop.
This process adds some overhead latency to unicast transmissions, but it helps prevent replay
attacks. For more information see Zigbee security.

Maximum RF payload size
The maximum payload size on the XBee 3 Zigbee RF Module is a function of the following:

n Message type: broadcast or unicast
n AES encryption (EE command)
n APS security (TO bit 4)
n Secure Session (TO bit 5)
n Source Routing

The maximum payload size of a single packet is:

Message type Unicast Broadcast

Unencrypted (EE = 0) 84 bytes 92 bytes

Encrypted (EE = 1) 66 bytes 74 bytes

APS Security (EE = 1, TO bit 5) 57 bytes N/A

Transmission, addressing, and routing Maximum RF payload size

Digi XBee® 3 Zigbee® RF Module 116

When operating in Transparent mode (AP = 0), all outgoing transmissions are sent as non-fragmented
messages.
When sending a unicast transmission in API mode or through MicroPython, the maximum payload is
255 bytes. If the combination of payload and optional APS security overhead is too high, the message
fragments into a maximum of five fragments. The firmware encrypts and transmits each fragment
separately. The destination device reassembles the fragments into a full message.
Broadcast transmissions are sent as non-fragmentedmessages and cannot use APS security.

n Enabling encryption (EE = 1) reduces maximum payload size by 18 bytes.
n Enabling APS security (TO bit 5) reduces maximum payload size by 9 bytes.
n Enabling Secure Session (TO bit 4) reduces maximum payload size by 5 bytes.

Using source routing will further reduce payload size depending on how many hops are being
traversed. When an aggregator (AR < 0xFF) sends a source-routedmessage, it embeds the route into
the message as overhead, or into each fragment of the message if fragmentation is necessary. If you
use APS security (EE 1, Tx Option 0x20), it reduces the number further.
The route overhead is two bytes plus two bytes per hop. The bytes are:

n One byte for the number of hops.
n One byte is an index into the route list that increments in value at each hop.
n For each hop, two bytes are used for the 16-bit network address of each routing device.

Aggregator source-routed payloadmaximums do not apply to messages that are sourced by non-
aggregator nodes (AR = 0xFF).
The following table shows the aggregator source-routed payloadmaximums (in bytes) as a function of
hops and APS security:

Hops Maximum payload Maximum APS-encrypted payload

1 255 255

2 255 255

3 255 255

4 255 255

5 255 255

6 255 215

7 250 205

8 240 195

9 230 185

10 220 175

11 210 165

12 200 155

Transmission, addressing, and routing Throughput

Digi XBee® 3 Zigbee® RF Module 117

13 190 145

14 180 135

15 170 125

16 160 115

17 150 105

18 140 95

19 130 85

20 120 75

21 110 65

22 100 55

23 90 45

24 80 35

25 70 25

Throughput
Throughput in a Zigbee network can differ by a number of variables, including:

n Number of hops
n Encryption enabled/disabled
n Sleeping end devices
n Failures/route discoveries

ZDO transmissions
Zigbee defines a Zigbee device objects layer (ZDO) that provides device and service discovery and
network management capabilities.

Cluster name
Cluster
ID Description

Network Address Request 0x0000 Request a 16-bit address of the radio with a matching
64-bit address (required parameter).

Active Endpoints Request 0x0005 Request a list of endpoints from a remote device.

LQI Request 0x0031 Request data from a neighbor table of a remote device.

Routing Table Request 0x0032 Request to retrieve routing table entries from a remote
device.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 118

Cluster name
Cluster
ID Description

Network Address Response 0x8000 Response that includes the 16-bit address of a device.

LQI Response 0x8031 Response that includes neighbor table data from a
remote device.

Routing Table Response 0x8032 Response that includes routing table entry data from a
remote device.

Refer to the Zigbee specification for a detailed description of all Zigbee device profile services.

Send a ZDO command
When operating in API mode, ZDO commands can be sent as the payload of an explicit transmit API
frame (0x11). The outgoing ZDO commandmust be formatted properly with the correct byte order
and endianness observed. In order to receive responses to outgoing ZDO commands, you need to
enable ZDO pass-through using AO (API Options).
To send a ZDO command:

1. Set the source and destination endpoints and profile ID to 0.
2. Set the cluster ID to match the cluster ID of the appropriate service. For example, to send an

active endpoints request, set the cluster ID to 0x0005.
3. The first byte of payload in the API frame is an application sequence number (transaction

sequence number) that can be set to any single byte value. The first byte of the ZDO response
uses this same value.

4. All remaining payload bytes must be set as required by the ZDO. All multi-byte values must be
sent in little endian byte order.

Receiving ZDO command and responses
Incoming ZDO commands and responses are handled by the XBee application by default. In order to
receive and work with incoming ZDO commands, you must configure the device to pass ZDOs to the
serial port instead of the XBee handling them. AO (API Options) is used to control this.
When operating in API mode and with AO set to 0, the output format for received data packets is
Digi's native 0x90 receive frame format. In this configuration, the XBee application will handle and
respond to any incoming ZDO requests. For unsupported ZDO commands, the XBee 3 Zigbee RF
Module will respond with: ZDO not supported. The following figure shows AO set to 0.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 119

When AO is non-zero, the API frame format for received data packets is an explicit 0x91 receive frame.
This frame contains the additional fields necessary to interpret ZDO messages.
Bits 1, 2, and 3 of the AO command dictate the routing of incoming ZDO messages. When these bits
are cleared, the XBee 3 Zigbee RF Module will handle and respond to ZDO commands. When these bits
are set, then Supported ZDO, Unsupported ZDO, and/or Bind Requests are passed through the UART
and the XBee device will not respond.
Bit 4 of the AO command will allow any supported ZDO commands that the XBee application handles
to be echoed out of the serial port. This is useful as a diagnostic tool to identify when the XBee 3
Zigbee RF Module is responding to ZDO commands and what types.
Setting bit 5 of AO will suppress all ZDO output and disable pass through. Setting bit 5 will behave as if
bits 1, 2, and 3 are 0 (XBee device handles incoming requests). This is useful if you want to use the
0x91 receive frame, but only emit Digi-specific messages out of the serial port. The following figure
shows AO set to a non-zero value.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 120

When a ZDO message is received on endpoint 0 and profile ID 0, the cluster ID indicates the type of
ZDO message received. The first byte of payload is generally a sequence number that corresponds to
a sequence number of a request. The remaining bytes are set as defined by the ZDO. Similar to a ZDO
request, all multi-byte values in the response are in little endian byte order.

Example 1: Send a ZDO LQI request to read the neighbor table contents of a
remote
Looking at the Zigbee specification, the cluster ID for an LQI Request is 0x0031, and the payload only
requires a single byte (start index). This example sends an LQI request to a remote device with a 64-
bit address of 0x0013A200 40401234. The start index is set to 0, and the transaction sequence
number is set to 0x76.

API Frame
7E 0016 11 01 0013A200 40401234 FFFE 00 00 0031 0000 00 00 76 00 CE

Field composition

0x0016 length

0x11 Explicit transmit request

0x01 Frame ID (set to a non-zero value to enable the transmit status message, or set
to 0 to disable)

0x0013A200
40401234

64-bit address of the remote

0xFFFE 16-bit address of the remote (0xFFFE = unknown). Optionally, set to the 16-bit
address of the destination if known.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 121

0x00 Source endpoint

0x00 Destination endpoint

0x0031 Cluster ID (LQI Request, or Neighbor table request)

0x0000 Profile ID (Zigbee device profile)

0x00 Broadcast radius

0x00 Tx Options

0x76 Transaction sequence number

0x00 Required payload for LQI request command

0xCE Checksum (0xFF - SUM (all bytes after length))

Description
This API frame sends a ZDO LQI request (neighbor table request) to a remote device to obtain data
from its neighbor table. You must set the AO command correctly on an API device to enable the
explicit API receive frames to receive the ZDO response.

Example 2: Send a ZDO network Address Request to discover the 16-bit address of
a remote
Looking at the Zigbee specification, the cluster ID for a network Address Request is 0x0000, and the
payload only requires the following:
[64-bit address] + [Request Type] + [Start Index]
This example sends a Network Address Request as a broadcast transmission to discover the 16-bit
address of the device with a 64-bit address of 0x0013A200 40401234. The request type and start
index are set to 0, and the transaction sequence number is set to 0x44.

API frame
7E 001F 11 01 00000000 0000FFFF FFFE 00 00 0000 0000 00 00 44 34124040 00A21300 00 00 33

Field composition

0x001F length

0x11 Explicit transmit request

0x01 Frame ID (set to a non-zero value to enable the transmit status message,
or set to 0 to disable)

0x00000000 0000FFFF 64-bit address for a broadcast transmission

0xFFFE Set to this value for a broadcast transmission

0x00 Source endpoint

0x00 Destination endpoint

0x0000 Cluster ID (Network Address Request)

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 122

0x0000 Profile ID (Zigbee device profile)

0x00 Broadcast radius

0x00 Tx Options

0x44 Transaction sequence number

0x34124040 00A21300
00 00

Required payload for Network Address Request command

0x33 Checksum (0xFF - SUM (all bytes after length))

Description
This API frame sends a broadcast ZDO Network Address Request to obtain the 16-bit address of a
device with a 64-bit address of 0x0013A200 40401234. We inserted the bytes for the 64-bit address in
little endian byte order. You must insert data for all multi-byte fields in the API payload of a ZDO
command in little endian byte order. You must set the AO command correctly on an API device to
enable the explicit API receive frames to receive the ZDO response.

Support ZDOs with the XBee API
The Zigbee Device Profile is a management and discovery service layer supported on all Zigbee
devices. Like all other profiles, the Zigbee Device Profile defines a set of clusters that can be used to
perform a variety of advanced network management and device discovery operations. Since the
Zigbee Device Profile is supported to some extent on all Zigbee devices, many Zigbee Device Profile
cluster operations can be performed on a variety of Zigbee devices, regardless of the stack or chipset
manufacturer.
The Zigbee Device Profile has an application profile identifier of 0x0000. All Zigbee devices support a
reserved endpoint called the Zigbee Device Objects (ZDO) endpoint. The ZDO endpoint runs on
endpoint 0 and supports clusters in the Zigbee Device Profile. All devices that support the Zigbee
Device Profile clusters support endpoint 0.
ZDO services include the following features:

n View the neighbor table on any device in the network
n View the routing table on any device in the network
n View the end device children of any device in the network
n Obtain a list of supported endpoints on any device in the network
n Force a device to leave the network
n Enable or disable the permit-joining attribute on one or more devices

Support the ZDP with the XBee API
The XBee API provides a simple interface to the Zigbee Device Objects endpoint. The explicit transmit
API frame (API ID 0x11) allows data transmissions to set the source and destination endpoints, cluster
ID, and profile ID. ZDO commands can be sent by setting the source and destination endpoints to the
ZDO endpoint (0x00), the profile ID to the Zigbee Device Profile ID (0x0000), and the cluster ID to the
appropriate ZDO cluster ID.
The data payloadmust contain a sequence number as the first byte (transaction sequence number),
followed by all required payload bytes for the ZDO. Multi-byte fields must be sent in little endian byte
order.
To receive ZDO commands and responses, the AO (API Output) commandmust be set to 1. This

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 123

enables the explicit receive API frame (API ID 0x91) which indicates the source and destination
endpoints, cluster ID, and profile ID.

ZDO Clusters
The following section outlines common ZDO commands including the following:

ZDO Command Cluster ID

Network (16-bit) Address Request 0x0000

Network (16-bit) Address Response 0x8000

IEEE (64-bit) Address Request 0x0001

IEEE (64-bit) Address Response 0x8001

Node Descriptor Request 0x0002

Node Descriptor Response 0x8002

Simple Descriptor Request 0x0004

Simple Descriptor Response 0x8004

Active Endpoints Request 0x0005

Active Endpoints Response 0x8005

Match Descriptor Request 0x0006

Match Descriptor Response 0x8006

End Device Bind Request 0x0020

End Device Bind Response 0x8020

Unbind Request 0x0022

Unbind Response 0x8022

Management LQI (Neighbor Table) Request 0x0031

Management LQI (Neighbor Table) Response 0x8031

Management Rtg (Routing Table) Request 0x0032

Management Rtg (Routing Table) Response 0x8032

Management Leave Request 0x0034

Management Leave Response 0x8034

Management Permit Join Request 0x0036

Management Permit Join Response 0x8036

Management Network Update Request 0x0038

Management Network Update Response 0x8038

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 124

Network Address Request

Cluster ID
0x0000

Description
Broadcast transmission used to discover the 16-bit (network) address of a remote device with a
matching 64-bit address.

Field
Name

Size
(bytes) Description

Sequence
number

1 Transaction sequence number—arbitrarily chosen.

IEEE
Address

8 64-bit address of a device in the network whose 16-bit (network) address
is being discovered.

Request
Type

1 0x00 – Single device response. Only the device with a matching IEEE
address responds.
0x01 – Extended response. The device with a matching IEEE address
responds AND sends a list of the 16-bit addresses of devices in its
associated device list starting at 'Start Index' until the next entry will not
fit in the data payload.

Start Index 1 Indicates the starting index in the associated device list to return 16-bit
addresses. Only used if extended response is requested.

Network Address Response

Cluster ID
0x8000

Description
Indicates the 16-bit (network) address of a remote whose 64-bit address matched the address in the
request. If an extended response was requested, this will also include the 16-bit addresses of devices
in the associated device list.

Field Name
Size
(bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1

IEEE Address 8 Indicates the 64-bit address of the responding device.

Network
Address

2 Indicates the 16-bit address of the responding device.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 125

Field Name
Size
(bytes) Description

Number of
Addresses

0/1 Returns the number of addresses in the packet. Byte not
included in
response if an extended response was not requested.

Start Index 0/1 Starting index into the associated device list for this
report. Multiple
requests might be necessary to read all devices in the
list.

Network Addresses of
Associated
Device List

Variable List of all 16-bit addresses in the associated device list.

IEEE Address Request

Cluster ID
0x0001

Description
Unicast transmission used to discover the 64-bit (IEEE) address of a remote device with a matching
16-bit address.

Field
Name

Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen).

Network
Address

2 16-bit address of a device in the network whose 64-bit (network) address
is being discovered.

Request
Type

1 0x00 – Single device response. (Only the device with a matching IEEE
address responds.)
0x01 – Extended response. (The device with a matching IEEE address
responds AND sends a list of the 16-bit addresses of devices in its
associated device list starting at 'Start Index' until the next entry won't fit
in the data payload.

Start Index 1 Indicates the starting index in the associated device list to return 16-bit
addresses. Only used if extended response is requested.

IEEE Address Response

Cluster ID
0x8001

Description
Indicates the 64-bit (IEEE) address of a remote whose 16-bit address matched the address in the
request. If an extended response was requested, this will also include the 16-bit addresses of devices
in the associated device list.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 126

Field Name
Size
(bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1

IEEE Address 8 Indicates the 64-bit address of the responding device.

Network
Address

2 Indicates the 16-bit address of the responding device.

Number of
Addresses

0/1 Returns the number of addresses in the packet. Byte not included
in response if an extended response was not requested.

Start Index 0/1 Starting index into the associated device list for this report.
Multiple
requests might be necessary to read all devices in the list.

Network
Addresses of
Associated
Device List

Variable List of all 16-bit addresses in the associated device list.

Node Descriptor Request

Cluster ID
0x0002

Description
Transmission used to discover the node descriptor of a device with a matching 16-bit address.

Field Name
Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen).

Network
Address

2 16-bit address of a device in the network whose node descriptor is
being
requested.

Node Descriptor Response

Cluster ID
0x8002

Description
Indicates the node descriptor of the device.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 127

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1

Network
Address

2 Indicates the 16-bit address of the responding device.

Node
Descriptor

Variable See node descriptor below.

Node Descriptor

Name
Size
(bits) Description

Logical Type 3 Indicates the logical device type:
000 – Coordinator
001 – Router
010 – End device

Complex Descriptor
Available

1 1. Complex descriptor not supported
2. Complex descriptor supported

User Descriptor
Available

1 1. User descriptor not supported
2. User descriptor supported

Reserved 3

APS flags 3 Not supported. Set to 0.

Frequency Band 5 bit0 – 868 MHz
bit1 – Reserved
bit2 – 900 MHz
bit3 – 2.4 GHz
bit4 – Reserved

MAC capability flags 8 Bit0 – Alternate PAN coordinator
Bit1 – Device Type
Bit2 – Power source
Bit3 – Receiver on when idle
Bit4-5 – Reserved
Bit6 – Security capability
Bit7 – Allocate address

Manufacturer Code 16 Indicates the manufacturer's code assigned by the Zigbee
Alliance.

Maximum Buffer Size 8 Maximum size in bytes, of a data transmission (including APS
bytes).

Maximum incoming
transfer size

16 Maximum number of bytes that can be received by the node.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 128

Name
Size
(bits) Description

Server mask 16

Maximum
outgoingtransfer size

16 Maximum number of bytes that can be transmitted by this device,
including fragmentation.

Descriptor capability
field

8 Bit0 – Extended active endpoint list available
Bit1 – Extended simple descriptor list available

Simple Descriptor Response

Cluster ID
0x0004

Description
Transmission used to discover the simple descriptor of a device with a matching 16-bit address.

Field Name
Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen).

Network
Address

2 16-bit address of a device in the network whose simple descriptor
is
being requested.

Endpoint 1 The endpoint on the destination from which to obtain the simple
descriptor.

Simple Descriptor Response

Cluster ID
0x8004

Description
Indicates the simple descriptor of the device.

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1

Network Address 2 Indicates the 16-bit address of the responding device.

Length 1 Length of the simple descriptor.

Simple
Descriptor

Variable See simple descriptor below.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 129

Simple Descriptor

Name
Size
(bits) Description

Endpoint 8 The endpoint on the node to which this descriptor refers.

Application
profile ID

16 The profile ID supported on this endpoint.

Application
device
ID

16 Specifies the device description identifier supported on the device.

Application
device
version

4 The version of the device description supported on this endpoint.

Reserved 4

Input cluster
count

8 The number of input clusters supported on this endpoint.

Input cluster
list

Variable The list of input clusters supported on this endpoint. Each cluster is 2
bytes in size. This field is not included if the input cluster count is 0.

Output
cluster
count

8 The number of output clusters supported on this
endpoint.

Output
cluster list

Variable The list of output clusters supported on this endpoint.
Each cluster is 2 bytes in size. This field is not included if the output
cluster count is 0.

Active Endpoints Request

Cluster ID
0x0005

Description
Transmission used to discover the active endpoints on a device with a matching 16-bit address.

Field Name
Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen)

Network Address 2 16-bit address of a device in the network whose active endpoint
list
being requested.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 130

Active Endpoints Response

Cluster ID
0x8005

Description
Indicates the list of active endpoints supported on the device.

Field Name
Size
(bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1

Network Address 2 Indicates the 16-bit address of the responding device.

Active Endpoint
Count

1 Number of endpoints in the following endpoint list.

Active Endpoint List Variable List of endpoints supported on the destination device. One byte
per
endpoint.

Match Descriptor Request

Cluster ID
0x0006

Description
Broadcast or unicast transmission used to discover the device(s) that supports a specified profile ID
and/or clusters.

Field Name Size (bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen).

Network
Address

2 16-bit address of a device in the network whose power
descriptor is
being requested.

Profile ID 2 Profile ID to be matched at the destination.

Number of
Input Clusters

1 The number of input clusters in the In Cluster List for
matching. Set to 0 if no clusters supplied.

Input Cluster
List

2 * Number of
Input Clusters

List of input cluster IDs to be used for matching.

Number of
Output Clusters

1 The number of output clusters in the Output Cluster List for
matching. Set to 0 if no clusters supplied.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 131

Field Name Size (bytes) Description

Output Cluster
List

2 * Number of
Input Clusters

List of output cluster IDs to be used for matching.

Match Descriptor Response

Cluster ID
0x8006

Description
If a descriptor match is found on the device, this response contains a list of endpoints that support the
request criteria.

Field Name
Size
(bytes) Description

Sequence
number

1 Transaction sequence number used in the request.

Status 1

Network
Address

2 Indicates the 16-bit address of the responding device.

Length 1 The number of endpoints on the remote device that match the
request
criteria.

Match List Variable List of endpoints on the remote that match the request criteria.

End Device Bind Request

Cluster ID
0x0020

Description
Unicast transmission to the coordinator for binding devices.

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number (arbitrarily
chosen).

Network Address 2 Node ID of source device.

Extended Address 8 64 bit Address of the source device.

Endpoint 1 Targeted binding endpoint.

Profile ID 2 Profile of the targeted binding device.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 132

Field Name Size (bytes) Description

Number of input Clusters 1 The number of targeted input cluster(s).

Input Cluster ID 2 bytes for each
entry

The targeted input cluster(s).

Number of output
Clusters

1 The number of targeted output cluster(s).

Output Cluster ID 2 bytes for each
entry

The targeted output cluster(s).

End Device Bind Response

Cluster ID
0x8020

Description
Response to end device request.

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1 Status of End device request.

Bind/Unbind Request

Cluster ID
0x0021/0x0022

Description
Bind and Unbind Requests have the same format

Field
Name

Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen)

Extended
Address

8 64 bit Source Address of the device sending the request

Source
Endpoint

1 The endpoint needed for binding

Cluster ID 2 The cluster ID needed for binding. If doing unbind will be this cluster ID if
previously used the Bind request, otherwise it will be the Output Cluster ID
used in End Device Bind request.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 133

Field
Name

Size
(bytes) Description

Address
Mode

1 A fixed value indicating using one of the following address modes:
0x01 - Destination group (will require 2 additional bytes, see Note)
0x03 - Destination extended address and endpoint (9 additional bytes, see
Note)

Note Tables below has the additional fields for the payload.

Address mode 0x01: Unbind Destination Group

Field Name Size (bytes) Description

Destination group 2 Destination group used in the Bind Request Cluster ID 0x0021.

Address mode 0x03: Unbind Destination extended address and endpoint

Field
Name

Size
(bytes) Description

Extended
Address

8 64 bit Address of the destination device to be bind/unbind together. If doing
unbind will be address used in the Bind or End Device Bind request.

Endpoint 1 The endpoint needed for binding. If doing unbind will be endpoint used in
the Bind or End Device Bind request.

Bind/Unbind Response

Cluster ID
0x8021/0x8022

Description
Response to either the Bind or Unbind request.

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1 Status from ether the Bind or Unbind request.

Management LQI (Neighbor Table) Request

Cluster ID
0x0031

Description
Unicast transmission used to cause a remote device to return the contents of its neighbor table.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 134

Field
Name

Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen)

Start Index 1 Start index in the neighbor table to return neighbor entries. The response
cannot include more than 2-3 entries. Multiple LQI requests may be
required to read the entire neighbor table.

Management LQI (Neighbor Table) Response

Cluster ID
0x8031

Description
Indicates the neighbor table contents of the device.

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1

Neighbor Table Entries 1 The total number of neighbor table entries.

Start Index 1 The starting point in the neighbor table.

Network Table List Count 1 The number of neighbor table entries in this response.

Neighbor Table List Variable A list of neighbor table entries.

Neighbor Table Entry

Name
Size
(bits) Description

Extended PAN ID 64 The 64-bit extended PAN ID of the neighboring device.

ExtendedAddress 64 64-bit address of the neighboring device.

NetworkAddress 16 The 16-bit address of the neighboring device.

Device Type 2 The type of neighbor:
0x0 – Zigbee coordinator
0x1 – Zigbee router
0x2 – Zigbee end device
0x3 – Unknown

Receiver On When
Idle

2 Indicates if the neighbor's receiver is enabled during idle times.
0x0 – Receiver is off
0x1 – Receiver is on
0x02 – Unknown

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 135

Name
Size
(bits) Description

Relationship 3 The relationship of the neighbor with the remote device:
0x0 – Neighbor is the parent
0x1 – Neighbor is a child
0x2 – Neighbor is a sibling
0x3 – None of the above
0x4 – Previous child

Reserved 1 Set to 0.

Permit Joining 2 Indicates if the neighbor is accepting join requests.
0x0 – Neighbor not accepting joins
0x1 – Neighbor is accepting joins
0x2 – Unknown

Reserved 6 Set to 0.

Depth 8 The tree depth of the neighbor device. A value of 0x00 indicates the
device is the Zigbee coordinator for the network.

LQI 8 The estimated link quality of data transmissions from this
neighboring device.

Management Rtg (Routing Table) Request

Cluster ID
0x0032

Description
Unicast transmission used to cause a remote device to return the contents of its routing table.

Field
Name

Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen)

Start Index 1 Start index in the routing table to return routing table entries. The
response cannot include more than a handful of entries. Multiple routing
table requests may be required to read the entire routing table.

Management Rtg (Routing Table) Response

Cluster ID
0x8032

Description
Indicates the routing table contents of the device.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 136

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1

Routing Table Entries 1 The total number of routing table entries.

Start Index 1 The starting point in the routing table.

Routing Table List Count 1 The number of routing table entries in this response.

Routing Table List Variable A list of routing table entries.

Routing Table Entry

Name
Size
(bits) Description

Destination
Address

16 The 16-bit address of the destination device.

Status 3 Status of the route:
0x0 – Active
0x1 – Discovery Underway
0x2 – Discovery Failed
0x3 – Inactive
0x4 – Validation Underway

Memory
Constrained Flag

1 Indicates if the device is a low-memory concentrator.

Many-to-One
Flag

1 Flag indicating the destination is a concentrator (ssued a many-to-
onerequest).

Route Record
Required

1 Flag indicating if a route recordmessage should be sent to the device
prior to the next data transmission.

Reserved 2

Next-hop
Address

16 16-bit address of the next hop.

Management Leave Request

Cluster ID
0x0034

Description
Transmission used to cause a remote device to leave the network.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 137

Field Name
Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen)

Device Address 8 Address of the device the command is addressed to. See section
3.2.2.1.6 for details.

Options 1 Bitfield:
0x01 – Rejoin—If set, the device is asked to rejoin the network.
0x02 – Remove Children—If set, the device should remove its children.

Management Leave Response

Cluster ID
0x8034

Description
Indicates the status of a leave request.

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number used in the request

Status 1 Indicates the status of a leave request.

Management Permit Join Request

Cluster ID
0x0036

Description
Unicast or broadcast transmission used to cause a remote device or devices to enable joining for a
time.

Field Name
Size
(bytes) Description

Sequence number 1 Transaction sequence number (arbitrarily chosen)

Permit Duration 1 Specifies the time that joining should be enabled (in seconds).
If set to
0xFF, joining is enabled permanently.

Trust Center
Significance

1 If set to 1 and the remote is a trust center, the command
affects the
trust center authentication policy. Otherwise, it has no effect.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 138

Management Permit Joining Response

Cluster ID
0x8036

Description
Indicates the status of a permit joining request.

Field Name Size (bytes) Description

Sequence number 1 Transaction sequence number used in the request

Status 1 Indicates the status of a permit joining request.

Management Network Update Request

Cluster ID
0x0038

Description
Unicast transmission used to cause a remote device to do one of several things:

n Update the channel mask and network manager address (if scan duration = 0xFF)
n Change the network operating channel (if scan duration = 0xFE)
n Request to scan channels and report the results (if scan duration < 6)

Field Name
Size
(bytes) Description

Sequence
number

1 Transaction sequence number (arbitrarily chosen)

Scan
Channels

4 Bitmap indicating the channel mask that should be scanned.
Examples (big endian byte order):
Channel 0x0B = 0x800
Channel 0x10 = 0x10000
Channel 0x1A = 0x4000000
All Channels (0x0B – 0x1A) = 0x07FFF800

Scan
Duration

1 Set as described above to invoke the desired command.

Scan Count 0/1 If scan duration < 6, specifies the number of energy scans to conduct and
report. This can result in multiple responses being sent.

Network
Update ID

0/1 Set by the network channel manager

Network
Manager
Address

0/2 If scan duration = 0xFF, indicates the network address of the network
manager—who has network manager bit set in its node descriptor.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 139

Management Network Update Response

Cluster ID
0x8038

Description
Indicates the RF conditions near the device.

Field Name
Size
(bytes) Description

Sequence number 1 Transaction sequence number used in the request.

Status 1 Status of the Management Network Update notify command.

Scanned Channels 4 List of channels scanned by the request.

Total
Transmissions

2 Count of the total transmissions reported by the device.

Transmission
Failures

2 Sum of the transmission failures reported by the device.

ScannedChannels
List Count

1 The number of records contained in the energy values list.

Energy Values Variable The result of an energy measurement made on the scanned
channels, one byte per energy measurement.
0xFF – Too much interference on the channel.

API example 1
Send a broadcast transmission to discover the 16-bit address of a device with a 64-bit address of
0x0013A200 44332211 using the Network Address Request ZDO—cluster ID = 0x0000. Format the
command to also discover the 16-bit addresses of its children—if any.

1. To send this command, use the following fields:

0x11 API ID—transmit request.

0x00 Frame ID—set to 0 to disable transmit status.

0x00000000 0000FFFF 64-bit address for a broadcast transmission.
0xFFFE 16-bit address for a broadcast transmission.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x0000 Cluster ID—Network Address Request.

0x0000 Profile ID—Zigbee Device Profile ID.

0x00 Broadcast radius.

0x00 Transmit options.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 140

2. In the ZDO payload, set a transaction sequence number.
3. Follow with the required payload for the network address request ZDO. The following bytes will

be inserted into the data payload portion of the API frame:

0x01 Transaction sequence number—arbitrarily chosen.

0x44332211 00A21300 IEEE (64-bit) address of target device—little-endian byte order.

0x01 Request type—extended device request.

0x00 Start Index.

4. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.

Checksum (0xFF – SUM—all bytes after length).

Final API frame
7E 00 1F 11 00 00000000 0000FFFF FFFE 00 00 0000 0000 00 00 01 44332211 00A21300 01 00 92

API example 2
Send a broadcast transmission to discover the 64-bit address of a device with a 16-bit address of
0x3344 using the IEEE Address Request ZDO—cluster ID = 0x0001.

1. To send this command, use the following fields:

0x11 API ID—transmit request.

0x00 Frame ID—set to 0 to disable transmit status.

0x00000000 0000FFFF 64-bit address for a broadcast transmission.
0xFFFE 16-bit address for a broadcast transmission.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x0001 Cluster ID—IEEE Address Request.

0x0000 Profile ID—Zigbee Device Profile ID.

0x00 Broadcast radius.

0x00 Transmit options.

2. In the ZDO payload, set a transaction sequence number.
3. Follow with the required payload for the network address request ZDO. The following bytes will

be inserted into the data payload portion of the API frame:

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 141

0x02 Transaction sequence number—arbitrarily chosen.

0x4433 Network (16-bit) address of target device—little-endian byte order.

0x01 Request type—single device request.

0x00 Start Index.

4. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.

Checksum (0xFF – SUM—all bytes after length).

Final API frame
7E 00 19 11 00 00000000 0000FFFF FFFE 00 00 0001 0000 00 00 02 4433 00 00 79

API example 3
Send a broadcast transmission to discover the node descriptor of a device with a 16-bit address of
0x3344.

1. To send this command, use the following fields:

0x11 API ID—transmit request.

0x00 Frame ID—set to 0 to disable transmit status.

0x00000000 0000FFFF 64-bit address for a broadcast transmission.
0xFFFE 16-bit address for a broadcast transmission.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x0002 Cluster ID—Node Descriptor Request.

0x0000 Profile ID—Zigbee Device Profile ID.

0x00 Broadcast radius.

0x00 Transmit options.

2. In the ZDO payload, set a transaction sequence number.
3. Follow with the required payload for the network address request ZDO. The following bytes will

be inserted into the data payload portion of the API frame:

0x03 Transaction sequence number—arbitrarily chosen.

0x4433 Network (16-bit) address of target device—little-endian byte order.

0x01 Request type—single device request.

0x00 Start Index.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 142

4. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.

Checksum (0xFF – SUM—all bytes after length).

Final API frame
7E 00 17 11 00 00000000 0000FFFF FFFE 00 00 0002 0000 00 00 03 4433 77

API example 4
Send a unicast data transmission to read the neighbor table of a router with 64-bit address
0x0013A200 40401234 using the LQI Request ZDO—cluster ID = 0x0031.

1. To send this command, use the following fields:

0x11 API ID—transmit request.

0x00 Frame ID—set to 0 to disable transmit status.

0x0013A200 40401234 64-bit address for a broadcast transmission.
0xFFFE 16-bit address for a broadcast transmission—0xFFFE if unknown.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x0031 Cluster ID—LQI Request.

0x0000 Profile ID—Zigbee Device Profile ID.

0x00 Broadcast radius.

0x00 Transmit options.

2. In the ZDO payload, set a transaction sequence number.
3. Follow with the required payload for the network address request ZDO. The following bytes will

be inserted into the data payload portion of the API frame:

0x76 Transaction sequence number—arbitrarily chosen.

0x00 Start Index.

4. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.

Checksum (0xFF – SUM—all bytes after length).

Final API frame
7E 0016 11 00 0013A200 40401234 FFFE 00 00 0031 0000 00 00 76 00 CF

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 143

API example 5
Send a unicast data transmission to have a remote router perform an energy scan on all channels
using a ZDO Management Network Update Request—cluster ID = 0x0038. In this example, the 64-bit
address of the router is 0x0013A200 40522BAA.

1. To send this command, use the following fields:

0x11 API ID—transmit request.

0x00 Frame ID—set to 0 to disable transmit status.

0x0013A200 40522BAA 64-bit address for a broadcast transmission.
0xFFFE 16-bit address for a broadcast transmission—0xFFFE if unknown.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x0038 Cluster ID—Management Network Update Request.

0x0000 Profile ID—Zigbee Device Profile ID.

0x00 Broadcast radius.

0x00 Transmit options.

2. In the ZDO payload, set a transaction sequence number.
3. Follow with the required payload for the network address request ZDO. The following bytes will

be inserted into the data payload portion of the API frame:

0x01 Transaction sequence number—arbitrarily chosen.

0x00F8FF07 Scan channels—all 16 channels, little-endian byte order.

0x03 Scan duration.

0x02 Scan count—perform two energy scans.

4. The Network Update ID andNetwork Manager Address fields are not required for this
operation.

5. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.

Checksum (0xFF – SUM—all bytes after length).

Final API frame
7E 001B 11 00 0013A200 40522BAA FFFE 00 00 0038 0000 00 00 01 00F8FF07 03 02 99

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 144

API example 6
Parse a Management Network Update Response received in response to API example 5 to extract
energy data on the scan channels mask.
Recall that AO (API Options) must be set on an API device to receive ZDO responses. Suppose the
following API frame is received.

API frame
7E 002D 91 0013A200 40522BAA 06FC 00 00 8038 0000 01 01 00 00F8FF07 1D00 0000 10 54 5E 69 5B
4B 48 44 48 55 55 57 46 51 41 44 4B 6E

Decoded API frame

0x7E Start delimiter.

0x002D Length.

0x91 Explicit receive API frame.

0x0013A200 40522BAA 64-bit address of the remote—who performed
the energy scan.
0x06FC 16-bit address of the remote.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x8038 Cluster ID—Management network update notify.

0x0000 Profile ID—Zigbee Device Profile ID.

0x01 Rx options—packet was acknowledged.

0x010000F8FF071D00000010545E…
41444B

Data payload.

0x6E Checksum.

The data payload bytes can be interpreted as a ZDO management network update notify packet.
Recall that the first byte in the data payload is a transaction sequence number that matches the
sequence number of the request.

Data payload bytes (Management Network Update Response)

0x01 Transaction sequence number used in request.

0x00 Status (SUCCESS).

0x00F8FF07 Channel mask (16 channels enabled, represented in little endian byte order).

0x1D00 Total transmissions (0x001D = 29).

0x0000 Transmission failures.

Transmission, addressing, and routing ZDO transmissions

Digi XBee® 3 Zigbee® RF Module 145

0x10 Scanned channel count.

0x54 1st channel in channel mask energy level (channel 0x0B).

0x5E 2nd channel in channel mask energy level (channel 0x0C).

…

0x4B last channel in channel mask energy level (channel 0x1A).

In the Ember stack, to convert energy levels to dBm units, do the following:
Energy(dBm) = (energy level – 154)

For example, the energy level reported on channel 0x0B (0x54) is (84 – 154) = -70 dBm.
As a general rule, lower raw energy value readings indicate lower RF energy on the channel. The
energy level representation and conversion equations might be different for other (non-Ember)
platforms.

API Example 7
Parse the Network Address Response (extended response) received from a device with a 64-bit
address of 0x0013A200 404A2257. Use the data in the response to determine the 16-bit address of
the device and to determine the addresses of its end device children.
Recall that AO (API Options) must be set on an API device to receive ZDO responses. Suppose the
following Explicit Rx API frame is received.

API frame
7E 0022 91 FFFFFFFF FFFFFFFF 0848 00 00 8000 0000 01 01 00 57 22 4A 40 00 A2 13 00 48 08 01 00
AA
AC 45

Decoded API frame

0x7E Start delimiter.

0x0022 Length.

0x91 Explicit receive API frame.

0xFFFFFFFF FFFFFFFF - 64-bit source address—all 0xFFs if
network layer did not include a source 64-bit
address.
0x0848 - 16-bit source address.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x8000 Cluster ID—Network Address Response.

0x0000 Profile ID—Zigbee Device Profile ID.

Transmission, addressing, and routing Transmission timeouts

Digi XBee® 3 Zigbee® RF Module 146

0x01 Receive options—packet was acknowledged.

0x010057224A4000A2130048080100AAAC Data payload.

0x45 Checksum (0xFF – SUM(all bytes after length).

The data payload bytes can be interpreted into a network address response. Recall that the first byte
in the data payload is a transaction sequence number that matches the sequence number of the
request.

Data payload bytes (Network Address Response)

0x01 Transaction Sequence Number.

0x00 Status (SUCCESS).

0x57224A40 00A21300 – 64-bit address of the responder—in little-endian byte order.
0x4808 – 16-bit address of the response—in little-endian byte order.

0x01 Number of associated devices—end device children.

0x00 Start index—starting index in the child table list.

0xAAAC 16-bit address of the child—in little-endian byte order.

From the ZDO Network Address Response, we have identified the following:

n The remote with 64-bit address 0x0013A200 404A2257 has a 16-bit address of 0x0848.
n The remote has one end device child.
n The end device child of the remote has a 16-bit address of 0xACAA.

Transmission timeouts
The Zigbee stack includes two kinds of transmission timeouts, depending on the nature of the
destination device. Destination devices such as routers with receivers always on use a unicast
timeout. The unicast timeout estimates a timeout based on the number of unicast hops the packet
should traverse to get data to the destination device. For transmissions destined for end devices, the
Zigbee stack uses an extended timeout that includes the unicast timeout (to route data to the end
device's parent), and it includes a timeout for the end device to finish sleeping, wake, and poll the
parent for data.
The Zigbee stack includes some provisions for a device to detect if the destination is an end device.
The Zigbee stack uses the unicast timeout unless it knows the destination is an end device.
The XBee API includes a transmit options bit that you can set to specify the extended timeout used for
a given transmission. If you set this bit, the extended timeout will be used when sending RF data to
the specified destination. To improve routing reliability, applications set the extended timeout bit
when sending data to end devices if:

n The application sends data to 10 or more remote devices, some of which are end devices.
n The end devices may sleep longer than the unicast timeout.

Equations for these timeouts are computed in the following sections.

Transmission, addressing, and routing Transmission timeouts

Digi XBee® 3 Zigbee® RF Module 147

Note The timeouts in this section are worst-case timeouts and should be padded by a few hundred
milliseconds. These worst-case timeouts apply when an existing route breaks down (for example,
intermediate hop or destination device moved).

Unicast timeout
Set the unicast timeout with the NH command. The actual unicast timeout is computed as ((50 * NH)
+ 100). The default NH value is 30 which equates to a 1.6 second timeout.
The unicast timeout includes 3 transmission attempts (1 attempt and 2 retries).
The maximum total timeout is approximately:
3 * ((50 * NH) + 100)
For example, if NH=30 (0x1E), the unicast timeout is approximately 3 * ((50 * 30) + 100) or one of the
following:

n 3 * (1500 + 100)
n 3 * (1600)
n 4800 ms
n 4.8 seconds

Extended timeout
The worst-case transmission timeout when you are sending data to an end device is a larger issue
than when transmitting to a router or coordinator. As described in Parent operation, RF data packets
are sent to the parent of the end device, which buffers the packet until the end device wakes to
receive it. The parent buffers an RF data packet for up to (1.2 * SP) time.
To ensure the end device has adequate time to wake and receive the data, the extended transmission
timeout to an end device is:
(50 * NH) + (1.2 * SP)
This timeout includes the packet buffering timeout (1.2 * SP) and time to account for routing through
the mesh network (50 * NH).
If no acknowledgment is received within this time, the sender resends the transmission up to two
more times. With retries included, the longest transmission timeout when sending data to an end
device is:
3 * ((50 * NH) + (1.2 * SP))
The SP value in both equations must be entered in millisecond units. The SP command setting uses 10
ms units andmust be converted to milliseconds to be used in this equation.
For example, suppose a router is configured with NH=30 (0x1E) and SP=0x3E8 (10,000 ms), and that it
is either trying to send data to one of its end device children, or to a remote end device. The total
extended timeout to the end device is approximately:
3 * ((50 * NH) + (1.2 * SP)) or one of the following:

n 3 * (1500 + 12000)
n 3 * (13500)
n 40500 ms
n 40.5 seconds

Transmission, addressing, and routing Transmission timeouts

Digi XBee® 3 Zigbee® RF Module 148

Transmission examples
Example 1: Send a unicast API data transmission to the coordinator using 64-bit address 0, with
payload “TxData”.

API frame
7E 0014 10 01 00000000 00000000 FFFE 00 00 54 78 44 61 74 61 AB

Field composition

0x0014 length

0x10 API ID (TX data)

0x01 Frame ID (set greater than 0 to enable the TX-status response)

0x00000000 00000000 64-bit address of coordinator (ZB definition)

0xFFFE Required 16-bit address if sending data to 64-bit address of 0

0x00 Broadcast radius (0 = max hops)

0x00 Tx options

0x54 78 44 61 74 61 ASCII representation of “TxData” string

0xAB Checksum (0xFF - SUM (all bytes after length))

Description
This transmission sends the string “TxData” to the coordinator, without knowing the 64-bit address of
the coordinator device. ZB firmware defines a 64-bit address of 0 as the coordinator. If the
coordinator's 64-bit address was known, the 64-bit address of 0 could be replaced with the
coordinator's 64-bit address, and the 16-bit address could be set to 0.

Example 2: Send a broadcast API data transmission that all devices can receive (including sleeping end
devices), with payload “TxData”.

API frame
7E 0014 10 01 00000000 0000FFFF FFFE 00 00 54 78 44 61 74 61 AD

Field composition

0x0014 length

0x10 API ID (TX data)

0x01 Frame ID (set to a non-zero value to enable the TX-status response)

0x00000000 0000FFFF Broadcast definition (including sleeping end devices)

0xFFFE Required 16-bit address to send broadcast transmission

Transmission, addressing, and routing Transmission timeouts

Digi XBee® 3 Zigbee® RF Module 149

0x00 Broadcast radius (0 = max hops)

0x00 Tx options

0x54 78 44 61 74 61 ASCII representation of “TxData” string

0xAD Checksum (0xFF - SUM (all bytes after length))

Description
This transmission sends the string “TxData” as a broadcast transmission. Since the destination
address is set to 0xFFFF, all devices, including sleeping end devices can receive this broadcast.
If receiver application addressing is enabled, the XBee 3 Zigbee RF Module reports all received data
frames in the explicit format (0x91) to indicate the source and destination endpoints, cluster ID, and
profile ID where each packet was received. Status messages like modem status and route record
indicators are not affected.
To enable receiver application addressing, set the AO command to 1 using the Local AT Command
Request - 0x08 as follows:

API frame
7E 0005 08 01 414F 01 65

Field composition

0x0005 length

0x08 API ID (AT command)

0x01 Frame ID (set to a non-zero value to enable AT command response frames)

0x414F ASCII representation of 'A','O' (the command being issued)

0x01 Parameter value

0x65 Checksum (0xFF - SUM (all bytes after length))

Description
Setting AO = 1 is required for the XBee 3 Zigbee RF Module to use the Explicit Receive Indicator - 0x91
when receiving RF data packets. This is required if the application needs indication of source or
destination endpoint, cluster ID, or profile ID values used in received Zigbee data packets. ZDO
messages can only be received if AO = 1.

Zigbee security

Security overview 151
Network key 151
Link key 151
Join window 152
Key management 153
Device registration 154

Digi XBee® 3 Zigbee® RF Module 150

Zigbee security Security overview

Digi XBee® 3 Zigbee® RF Module 151

Security overview
Zigbee security protects network traffic using 128-bit AES cryptography techniques. A standard
security model is defined for supporting authentication and key management. Security is a very
important factor in designing a mesh network. Digi makes it easy to find the right level of security for
your specific application, ranging from a completely open and unencrypted network to a high security
model with out-of-band device registration.

WARNING! The out-of-the-box default configuration is an unencrypted network with a
generous join window. These defaults are meant for ease of development and should not
be used on the finished product. Enabling security is highly recommended.

Enabling encryption also enables source routing with the coordinator acting as a high RAM
concentrator by default. For smaller networks (less than 40 nodes) and low-throughput applications,
this will not have a significant impact to the network, as source routing will automatically be handled
by the XBee application. If you are deploying a larger network, you will likely require a full source
routing implementation with the coordinator configured as a low RAM concentrator. For more
information, see Source routing.

Network key
The network key encrypts and decrypts over the air messages at the network layer. When you enable
encryption, each node on the network is required to have the network key to communicate with other
nodes. The network key is shared by every device on the network and only needs to be set on the
network coordinator. Use the NK parameter to set a user-defined network key; this parameter is only
applicable to a coordinator (CE = 1). In most situations, the network key should be randomly
generated (NK = 0) andmanaged by the network.
If you are running a centralized trust center, you can change the NK parameter on the trust center
which propagates to the rest of the network a few seconds later. This is useful for high-security
applications where regular network key rotation may be desired. In a distributed trust center, the key
is defined when the network is formed and cannot be changed without reforming the network.
Optionally, network keys can be sent and received in-the-clear by setting the EO bit 0 (EO = 1) on the
forming and joining nodes. Digi strongly discourages this setting, because it could allow unauthorized
devices to obtain a copy of the network key.
In addition for centralized trust center you can use RK (Trust Center Network Key Rotation Interval)
to do network key rotation (only when NK = 0) with a range of 1 to 22 days automatic interval. Also
you can perform a one time key update by setting RK to zero, which could be used to extend the time
interval beyond 22 days or any interval implemented by your application.

Link key
Link keys are used at the APS layer to provide an extra level of encryption for end-to-end security. The
XBee 3 Zigbee application uses global link keys for both joining and APS-encrypted transmissions.
When joining a network with encryption enabled, the network key is securely exchanged by encrypting
it with the link key.
When using a centralized trust center, the link key that is used to join is exchanged with a more
secure key that is randomly generated by the trust center.
This section provides information about the types of link keys.

Zigbee security Join window

Digi XBee® 3 Zigbee® RF Module 152

Preconfigured link key - moderate security
Using a preconfigured global link key provides a very simple way to secure a network, which is
accomplished by configuring the same write-only KY value on every node on the network. Defining a
link key in this manner provides a moderate level of security while allowing for easy network
deployment. The security configuration can be done during manufacturing rather than at deployment.
If the joining node has a preconfigured link key that the trust center is not aware of, then it must be
registered using an out-of-bandmethod. Issue a 0x24 registration frame on the trust center, which
contains the link key and serial number of the joining device.

Well-known default link key - low security
The Zigbee Alliance specifies a well-known default link key. You can use this link key to allow unsecure
devices to easily join a secured network. By default, the XBee 3 Zigbee RF Module rejects any device
that attempts to join using this well-known key. To allow these devices to join, set the EO bit 4
(EO=0x10) on the centralized trust center.
If a joining device has KY = 0 (default), it attempts to use the well-known default link key to join.

Install code derived link key - high security
Every device supporting Zigbee 3.0 is required to have an install code. Read the install code by
querying the I? command, which consists of a 16-byte install code + 2 byte CRC. The install code must
be read from the joining node and entered to the trust center through an out-of-bandmethod.
Typically, the user reads an install code from some type of display or application on the joining node.
The user then provides the joiner's install code and serial number to the trust center using a locally
issued 0x24 registration API frame by setting bit 0 of the options field.
Using install codes for generating link keys is the most secure method, because it allows users to
clearly identify the joining node to the trust center, and it guarantees that each joining device has a
random link key.
For a joining device to use an install code, DC bit 0 (DC = 1) must be set on the joining device. This
generates a link key based on the install code and the KY parameter will be ignored.

Join window
Zigbee imposes a limited window of time in which a network can permit joining. The maximum joining
window time allowed by the Zigbee specifications is 254 seconds (NJ = 0xFE). Whenever the join
window opens, the NJ value of the device that opens the window is used. This timeout value is not
shared by the rest of the network.
The following conditions cause the network join window to open for NJ seconds:

n Local device forms a network (CE = 1).
n A router joins the network. This uses the router's NJ value to open the window.
n The commissioning button is enabled (D0 = 1) and pressed twice on a router or coordinator on

the network.
n A CB2 command is issued to a router or coordinator on the network.
n A device is successfully registered to the trust center via 0x24 API frame.
n NJ parameter value is changed and applied.
n Local device is power cycled.

Zigbee security Key management

Digi XBee® 3 Zigbee® RF Module 153

When the join window opens using CB2, the device sends a broadcast to the rest of the network. The
joining device does not need to be adjacent to the device that opened the joining window. When
setting NJ on a device, the join window is only opened on the local device, a broadcast to the network
does not get sent.
If NJ is set to 0, the join window remains closed unless explicitly opened via the commissioning button
or CB command. In this scenario, the join window open for a fixed period of 60 second when opened.
For a highly-secured network, Digi recommends setting NJ to 0 on every device so the join window
does not open inadvertently.
When using an encrypted network with a trust center, opening the join window must be performed on
the coordinator. If routers are also needed to allow joining, we recommend executing CB2 on the
coordinator which will broadcast the join window management message thus keeping all devices in
sync for both the transient link key and join window timeout. We also recommend setting KT andNJ
to the same value to have a uniform timeout.
Opening the join window will cause the transient link key to be entered into the key table. This allows
the link key used by the network to be exchanged with a joining device. If the key table timeout (KT) is
set lower than NJ, a joining device could fail to obtain the necessary keys even though the network
allows joining.
When the device executes CB2 or NJ > 0 andNJ < 0xFF the device performs a fast blink while the
joining window is open. For allNJ settings and executing CB2 a modem status for opening or closing
the join window is sent out the serial port when using AP1.

n 0x43: Joining window open
n 0x44: Joining window closed

WARNING! An always-open join window is permitted (NJ = 0xFF), but this causes the
network to operate outside of the Zigbee specifications. This option is provided for ease of
development and should not be used on the finished product.

Key management
Zigbee defines two security models for key management: centralized security model and distributed
security model.

Centralized security
A centralized trust center network is defined as a Zigbee network where one node acts as the
centralized key authority. This centralized trust center defines the network key andmanages its
distribution, determines when and if nodes can join the network, and issues application link keys.
Upon formation of the network, the network coordinator assumes the role of the trust center. The
trust center has a reserved address of 0 on the network, and any traffic sent to this address is routed
to the trust center.
When a node attempts to join, it first establishes a MAC association with a router on the network. The
router sends a request to the trust center, indicating the node wants to join. The trust center decides
if the node can join based on the current join policy (Open join window + EO options). If the trust
center approves the attempt to join, the network key is encrypted using a trust center link key and
sent to the joining node. The joining node must have a copy of the link key in order to decrypt the
network key and successfully join the network.
If the joining node does not have a link key that matches the network or has an install code derived
link key, then it must be registered to the trust center. Registration is the means by which a link key is

Zigbee security Device registration

Digi XBee® 3 Zigbee® RF Module 154

given to the trust center using an out-of-bandmethod. Registration requires the trust center operate
in API mode (AP=1 or 2) and cannot be performed in Command or Transparent mode.

Distributed security
A distributed trust center does not have a node designated as a coordinator. All routers in the
network have a copy of the network key and are able to authorize joining devices, meaning every
router on the network is a trust center. The network key is set at the time the network is formed and
cannot change. The device that forms the network (CE is set to 1) will become the Network Manager.
As devices join the network, the Network Manager broadcasts an update with its address information.
Any traffic sent to the reserved 0 address will be directed to the Network Manager.
When a node joins a distributed trust center network, an adjacent router shares a copy of the network
key to the joining device. The network key is protected by encrypting the exchange with the joining
device with a global link key. The network key can optionally be sent in-the-clear by setting EO bit 1 on
every device on the network. Digi strongly discourages this setting, because it allows unsecure
devices access the network key.
You can perform device registration on a distributed trust center, but the 0x24 registration frame
must be issued on a router that is adjacent to the joining device; registration information is not shared
with the rest of the network.

Device registration
When a device attempts to joins a secure network, it must obtain a copy of the network key to
successfully communicate.
You can send the network key in the clear, but in most situations it will be encrypted with a link key. If
the link key is not preconfigured on both devices, the trust center must be told the link key the joining
device will be using to join. We call this process "registration" and is the method by which a link key
and serial number of the joining device is securely given to the trust center through the physical serial
interface. Because the registration information is not provided over-the-air, this is considered out-of-
band registration and provides the highest level of security since the credentials cannot be extracted
through RF channels.
Registration is performed using a Register Joining Device - 0x24 frame and is issued to the trust
center (either centralized or distributed). The registration frame is used to register a link key, register
an install code derived link key, or remove a previously registered device.

Centralized trust center
On a centralized trust center (EO = 2), registration is transient, meaning that a registered device will
only be authorized to join for a fixed period of time. This period is separate from the network join
window and is defined by the KT parameter on the centralized trust center. By default, a registered
device is authorized to join for a period of five minutes. If the device fails to join within this period, it
must be re-registered. After joining, it securely rejoins and does not need to be registered again
unless the device is explicitly removed from the network using an NR command or leave request. The
0x24 registration frame must be issued to the centralized trust center in this scenario, and routers
that are adjacent to the joining device route the join request to the trust center. The key table entries
on a centralized trust center is stored in RAM and is not preserved across a power cycle.
The key defined by the Trust Center's KY parameter value will always persist in the key table and
never expire. If EO bit 4 is set, then the well-known link key of ZigbeeAlliance09 will be persistently
active in the key table.

Zigbee security Device registration

Digi XBee® 3 Zigbee® RF Module 155

Distributed trust center
On a distributed trust center (EO = 0), registration is persistent, meaning that the registered device
will always be authorized to join as long as the join window is open. Registration information is not
shared to the rest of the network, so the 0x24 registration frame must be issued to a router that is
adjacent to the joining device. Because the link key table has a limited number of entries, you must
explicitly remove key table entries by deregistering devices using a 0x24 frame after they successfully
join to add subsequent devices. The key table on a distributed trust center is stored in flash and
persists across a power cycle.
Once a device joins the network and obtains a copy of the network key, it retains information about
the network and performs a secure rejoin, if power cycled. If you change a network parameter on the
device, it receives a leave request or a secure rejoin fails after three tries. The device must join the
network via association which requires registration.

Example: Form a secure network
The following example show how to form a secure Zigbee 3.0 network. This is the recommended
configuration for most networks, because it allows for ease of deployment while also maintaining a
moderate level of security.
Configure an XBee 3 device with the following parameters:

n CE = 1

This indicates that the device attempts to form a network rather than join an existing one.

n EE = 1

This enables encryption for the network.

n EO = 2
l This forms the network as a centralized trust center. If you want a distributed trust center,

set this parameter to 0.
l Any joining device must have the same value set to properly handle any key exchanges that

occur.
n KY = non-zero

l This defines a preconfigured link key for the network.
l This key can be configured on joining devices as a preconfigured global link key.
l If joining devices do not use the preconfigured link key, they must be registered to the

trust center before joining.
n NK = 0

l Using a zero NK value is preferred, as the XBee will generate a random network key that
cannot be read.

l If acting as a centralized trust center, this parameter can be changed after network
formation to update the network key for all devices on the network.

n NJ < 0xFF

This defines the amount of time you want to allow devices to join when the join window opens.
You can modify this after the network forms.

If you want to increase the level of security for this network, set KY = 0 on the forming node. This
generates a random link key that cannot be read and requires every joining device to be individually

Zigbee security Device registration

Digi XBee® 3 Zigbee® RF Module 156

registered. This configuration guarantees that only authorized devices can join the network, because
the global link key is unclear and cannot be read.

Example: Join a secure network using a preconfigured link key
The following examples show you how join an existing network that has security enabled and the
preconfigured link key configured on the network is known. Using this example, it is easy to deploy a
secure network, because each device is preconfigured to join the network. An installer only needs to
be concerned with opening the join window for new devices.
Configure a joining XBee 3 device with the following parameters:

n EE = 1

The joining node must have the same encryption settings as the network it will be joining.

n EO = 2
l If joining a centralized trust center, EO bit 1 must be set so the joining device is aware that

a link key exchange is needed.
l If joining a distributed trust center, clear EO bit 1.

n KY = KY from trust center

Because the KY value is known, it should be preconfigured on the joining device. Provided the
KY values match, it will be able to obtain the network key and join.

n NJ < 0xFF

Consider the join time that is configured on joining devices. If the device successfully joins the
network as a router (SM = 0), it immediately opens the join window for NJ seconds, effectively
refreshing the window. If you do not wish to reopen the join window in this manner, set NJ = 0
on all joining devices.

To join the device to the network, write the previous configuration to flash with a WR command, and
bring it within RF range of the network.
To open the join window, press the commissioning button twice on a network router or the trust
center. If the pushbutton is not available, you can issue a CB2 command.
Joining devices continuously attempt to join a network (unless explicitly told not to via a DJ = 0
command). However, if you want to have the module immediately attempt to join, press the
commissioning button once, or issue a CB1 command on the joining node.

Example: Register a joining node without a preconfigured link key
Using the previous example for joining a network, if the joining node is not aware of the link key on the
trust center (that is, it is either obscured (KY = 0) or otherwise unknown to the joining device) then it
must be registered to the trust center.
Configure a joining XBee 3 device with the following parameters:

n EE = 1

The joining node must have the same encryption settings as the network it will be joining.

n EO = 2

Zigbee security Device registration

Digi XBee® 3 Zigbee® RF Module 157

l If joining a centralized trust center, EO bit 1 must be set so the joining device is aware that
a link key exchange is needed.

l If joining a distributed trust center, clear EO bit 1.
n KY = non-zero value

Configure a known link key value for this particular joining device. This value must be known by
the installer, because it must be passed to the trust center out-of-band.

On the trust center, you must register this device using an API frame. Generate a 0x24 frame that
contains the following information:

n The link key (KY) of the joining device.
n The serial number of the joining device.

Link Key registration example
A device with the serial number 0013A200 12345678 that has a KY of 12345 is trying to join a secure
network.
The following 0x24 frame is generated and passed into the UART of the trust center:

7E 00 10 24 7B 00 13 A2 00 12 34 56 78 FF FE 00 01 23 45 31
The trust center will respond with the following 0xA4 registration response frame:

7E 00 03 A4 7B 00 E0

Note The Frame ID (0x7B) in the response corresponds with the Frame ID of the registration attempt.
A 00 result indicates that the key was successfully registered.

When the registration succeeds, the join window automatically opens for NJ seconds (or 60 seconds if
NJ = 0).
If the trust center is centralized, this registered key table entry is transient and expires after KT
seconds. In a distributed trust center, it persist until it is explicitly cleared.

Example: Register a joining node using an install code
To provide the highest level of security, Digi recommends using install codes to register devices. Install
codes are randomly assigned to each Zigbee 3.0 device at the factory for the purpose of securely
joining a network. The process to register a device using an install code is similar to registering a link
key, but with some additional steps:
Configure a joining XBee 3 device with the following parameters:

n EE = 1

The joining node must have the same encryption settings as the network it is joining.

n EO = 2
l If joining a centralized trust center, EO bit 1 must be set so the joining device is aware a

link key exchange is needed.
l If joining a distributed trust center, clear EO bit 1.

n DC = 1

This tells the joining device to generate a link key from the install code of the device. If this bit
is enabled, then the device ignores and does not use the KY parameter. If you want to register
the device with the trust center using the device's link key, do not set the DC parameter. The
DC parameter is only used for registering a device using the I? install code.

Zigbee security Device registration

Digi XBee® 3 Zigbee® RF Module 158

On the trust center, you must register this device using an API frame. Generate a 0x24 frame that
contains the following information:

n The install code (I?) of the joining device.
n The serial number of the joining device.

Install code registration example
A device with the serial number 0013A200 12345678 that has a I? value of
F6F1913D834A08D6ADAF1F91BAF4052D7316 is trying to join a secure network.
The following 0x24 frame is generated and passed into the UART of the trust center. Set the options
field of the API frame to 01 to indicate that the supplied key is actually an install code:

7E 00 1F 24 D5 00 13 A2 00 12 34 56 78 FF FE 01 F6 F1 91 3D 83 4A 08 D6 AD AF 1F 91 BA
F4 05 2D 73 16 6A

The trust center will respond with the following 0xA4 registration response frame:
7E 00 03 A4 D5 00 86

Note The Frame ID (0xD5) in the response corresponds with the Frame ID of the registration attempt.
A 00 result indicates that the key was successfully registered.

When the registration succeeds, the join window automatically opens for NJ seconds (or 60 seconds if
NJ = 0).
If the trust center is centralized, this registered key table entry is transient and expires after KT
seconds. In a distributed trust center, it persists until explicitly cleared.

Example: Deregister a previously registered device
This feature is only needed in a distributed trust center, because the key table entries are persistent
and stored in flash. In a distributed trust center, there are only a limited number of entries available,
proper management of the key table is required if more than 10 devices will be joining using
registration.
To deregister a device, issue a 0x24 registration frame on the trust center with the serial number of
the registered device and a null (blank) key.

Deregistration example
A device with the serial number 0013A200 12345678 that was previously registered has successfully
joined the network, and needs to be deregistered to make room for subsequently joining devices.
The following 0x24 frame is generated and passed into the UART of the trust center. Note, that there
is no key field, indicating that the key entry should be removed:

7E 00 0D 24 C4 00 13 A2 00 12 34 56 78 FF FE 00 51
The trust center will respond with the following 0xA4 registration response frame:

7E 00 03 A4 C4 00 86

Note The Frame ID (0xC4) in the response corresponds with the Frame ID of the registration attempt.
A 00 result indicates that the key was successfully removed from the table.

Registration scenario
It is possible to combine some of the previously mentioned security features to maintain a high level
of security with simplified deployment, while also providing a means for authorized devices to securely

Zigbee security Device registration

Digi XBee® 3 Zigbee® RF Module 159

join via registration.
For example, an established Zigbee network with a centralized trust center is exhibiting some issues
that require analysis by a network engineer. Due to the nature of the deployment, the end user does
not want to disclose any of the security credentials to the contracted network engineer.
To allow the network engineer onto the network, the end user must be authorized to join via
registration. The network administrator sets the KT parameter on the centralized trust center to
0x7080, which sets the registration timeout to eight hours. Because the network engineer is not yet
on-site, the NJ parameter can be set to 0xFF to allow open joining, or openedmomentarily via a
pressing the commissioning button twice on a router or coordinator when he arrives.
A 0x24 frame is issued to the trust center that contains the serial number of the network engineer's
device and a one-time-use link key. The network engineer can then use this link key to join the
network and perform whatever work is necessary.
After the analysis has been performed and the network engineer has left the site, the network
administrator closes the join window by setting NJ to 0. Deregistration is not needed, because this is
a centralized trust center. The temporary link key expires after KT seconds, or when the device joins
the network through the centralized trust center, the temporary link key will be removed from the
table. If the node is removed from the network, it will need to be registered again with the trust
center.

Centralized trust center backup

To simplify the recovery of a network that has lost its centralized trust center due to a hardware
failure, it is possible to back up the necessary information to restore a centralized trust center using a
different physical XBee 3 Zigbee RF Module. This can be done without causing the network to be re-
formed in most cases.

Create the backup file 161
Store the file 161
Recover a Centralized Trust Center 161
Best practices 162

Digi XBee® 3 Zigbee® RF Module 160

Centralized trust center backup Create the backup file

Digi XBee® 3 Zigbee® RF Module 161

Create the backup file
To protect the security key information contained in the backup file from being accessed by
unauthorized users, the file is encrypted with 256-bit AES-CTR encryption. Use KB (Centralized Trust
Center Backup Key) to set the encryption key; it must be set before a backup file can be created. You
also need to set KB to the same value on the new device prior to restoring.

New networks
During the initial configuration of a centralized trust center, the backup encryption key should be set
using the KB command. Once a centralized trust center has been configured and formed a network,
an encrypted backup file can be created using BK (Centralized Trust Center Backup and Restore).

Existing networks
It is possible to begin backing up an existing centralized trust center without reforming its network if
a preconfigured link key was previously set on the trust center—KY value is non-zero.
To ensure security, the backup encryption key—KB—must be set prior to creating the backup file. To
set KB while maintaining the current key information—KY andNK—the current value of KYmust be
provided to verify that KB is being set by an authorized administrator of the network. If KB is set
without providing KY, the existing values of KY andNK are cleared; you must take care, as this
effectively invalidates the current network. See KB (Centralized Trust Center Backup Key) for more
details.

Note Once KB has been set the first time, then the current KB key can be used to set a new key in
place of KY. See KB (Centralized Trust Center Backup Key) for more details.

Store the file
Once a backup file has been created, it will be located in the device’s file system with the name
backup_TC<SL>.xbee where SL is the lower 32 bits of the device address. This file can be retrieved
from the trust center using XCTU’s File System Manager. The backup file must be stored off of the
device as it may be impossible to retrieve after a hardware failure. Ideally, a new backup file should be
periodically created and retrieved. If NWK keys are regularly rotated, we advise saving a backup after
the rotation.
The backup file and value of KB should be kept secure and appropriately safeguarded against access
by unauthorized users.

Recover a Centralized Trust Center
In the event of a hardware failure, the failed device may be replaced with a new device. The backup
file can be transferred to the new devicee using the File System Manager. You must set the same
encryption key value using the KB command and the restore operation can be completed with the BK
command.
After restoring a trust center backup, the configuration of the new device will completely match that
of the previous trust center. If the backup file is sufficiently recent, the coordinator should now be able
to communicate with the existing network and the process is complete.
If the restored coordinator is not able to communicate with the network it is possible that some of
the network information contained in the file may be out of date. You can retrieve updated network
information from a router that is still on the network using the CX command. The output of this
command is then used as additional parameters for the BK command to update the new coordinator’s

Centralized trust center backup Best practices

Digi XBee® 3 Zigbee® RF Module 162

network information. Finally, the network should be configured with a new network key by issuing a
NKwith a new key value to the replacement trust center.

Best practices
We recommend setting a value for KY even when using install codes. This allows KB to be set on a
deployed network using the KY value without network disruption.
After a restore, no attempt should be made to reuse the original device that was used to create the
backup. This is because the new device’s EUI64 (SH + SL) will have been permanently changed to that
of the original device and an attempt to use both could result in networking conflicts. This procedure
is intended for situations where the original XBee 3 device has been rendered inoperable.

Network commissioning and diagnostics
We call the process of discovering and configuring devices in a network for operation, "network
commissioning." Devices include several device discovery and configuration features. In addition to
configuring devices, you must develop a strategy to place devices to ensure reliable routes. To
accommodate these requirements, devices include features to aid in placing devices, configuring
devices, and network diagnostics.

Place devices
For a network installation to be successful, installers must be able to determine where to place
individual XBee devices to establish reliable links throughout the network.

Test links in a network - loopback cluster
To measure the performance of a network, you can send unicast data through the network from one
device to another to determine the success rate of several transmissions. To simplify link testing, the
devices support a Loopback cluster ID (0x12) on the data endpoint (0xE8). The cluster ID on the data
endpoint sends any data transmitted to it back to the sender.
The following figure demonstrates how you can use the Loopback cluster ID and data endpoint to
measure the link quality in a mesh network.

The configuration steps for sending data to the loopback cluster ID depend on what mode the device
is in. For details on setting the mode, see AP (API Enable). The following sections list the steps based
on the device's mode.

Transparent operating mode configuration (AP = 0)
To send data to the loopback cluster ID on the data endpoint of a remote device:

1. Set the CI command to 0x12.
2. Set the SE and DE commands to 0xE8 (default value).

Digi XBee® 3 Zigbee® RF Module 163

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 164

3. Set the DH and DL commands to the address of the remote (0 for the coordinator, or the 64-bit
address of the remote).

After exiting Commandmode, the device transmits any serial characters it received to the remote
device, which returns those characters to the sending device.

API operating mode configuration (AP = 1 or AP = 2)
Send an Explicit Addressing Command Request - 0x11 using 0x12 as the cluster ID and 0xE8 as both
the source and destination endpoint.
The remote device echoes back the data packets it receives to the sending device.

RSSI indicators
It is possible to measure the received signal strength on a device using the DB command. DB returns
the RSSI value (measured in -dBm) of the last received packet. However, this number can be
misleading in Zigbee networks. The DB value only indicates the received signal strength of the last
hop. If a transmission spans multiple hops, the DB value provides no indication of the overall
transmission path, or the quality of the worst link; it only indicates the quality of the last link.
Determine the DB value in hardware using the RSSI/PWM device pin (Micro pin 7/SMT pin 7/TH pin 6).
If you enable the RSSI PWM functionality (P0 command), when the device receives data, it sets the
RSSI PWM to a value based on the RSSI of the received packet (this value only indicates the quality of
the last hop). You could connect this pin to an LED to indicate if the link is stable or not.

Device discovery

Network discovery
Use the network discovery command to discover all devices that have joined a network. Issuing the
ND command sends a broadcast network discovery command throughout the network. All devices
that receive the command send a response that includes:

n Device addressing information
n Node identifier string (see NI (Node Identifier))
n Other relevant information

You can use this command for generating a list of all module addresses in a network.

ZDO discovery
The Zigbee device profile includes provisions to discover devices in a network that are supported on all
Zigbee devices (including non-Digi products). These include the LQI Request (cluster ID 0x0031) and
the Network Update Request (cluster ID 0x0038). You can use the LQI Request to read the devices in
the neighbor table of a remote device, and the Network Update Request for a remote device to
complete an active scan to discover all nearby Zigbee devices. You can send both of these ZDO
commands using the Explicit Addressing Command Request - 0x11. For more information, see API
Operation. Refer to the Zigbee specification for formatting details of these two ZDO frames.

Joining Announce
All Zigbee devices send a ZDO Device Announce broadcast transmission when they join a Zigbee
network (ZDO cluster ID 0x0013). These frames are sent out the device's serial port as an Explicit Rx
Indicator frame - 0x91 if AO is set to 1.
The device announce payload includes the following information:

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 165

[Sequence Number] + [16-bit address] + [64-bit address] + [Capability]

The 16-bit and 64-bit addresses are received in little-endian byte order (LSB first). See the Zigbee
specification for details.
Any received Network Address Requests (ZDO cluster ID 0x0000) and IEEE Address Request (ZDO
Cluster ID 0x0001) will also be emitted if AO is set to 1.

Commissioning pushbutton and associate LED
XBee devices support a set of commissioning pushbutton and LED behaviors to aid in device
deployment and commissioning. These include the commissioning push button definitions and
associate LED behaviors. The following features can be supported in hardware:

XBee 3 SMT

A pushbutton and an LED can be connected to the surface-mount device to support the commissioning
pushbutton and associate LED functionalities.

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 166

XBee 3 Micro

A pushbutton and an LED can be connected to the Micro device to support the commissioning
pushbutton and associate LED functionalities.

XBee 3 Through-hole

A pushbutton and an LED can be connected to the through-hole-mount device to support the
commissioning pushbutton and associate LED functionalities.

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 167

Commissioning pushbutton
The commissioning pushbutton definitions provide a variety of simple functions to help with deploying
devices in a network. Enable the commissioning button functionality by setting D0
(DIO0/AD0/Commissioning Button Configuration) to 1 (enabled by default).

Button
presses Description

1 Start Joining. Wakes a sleeping end device for 30 seconds, regardless of the ST/SN
setting. It also sends node identification broadcast if joined to a network.
A Zigbee device blinks a numeric error code on the Associate pin indicating the cause of
join failure for (AI - 32) times.
A SE router or SE end device which is associated but not authenticated to a network
leaves its network; then attempt to join.

2 Enable Joining. Broadcast a Mgmt_Permit_Joining_req (ZDO ClusterID 0x0036) with TC_
Significance set to 0x00.
If NJ is 0x00 or 0xFF, PermitDuration is set to one minute, otherwise PermitDuration is
set to NJ.

4 Restore configuration to default values and leave the network. Equivalent to issuing NR,
RE, and AC commands.

Use CB (Commissioning Pushbutton) to simulate button presses in software. Issue a CB command
with a parameter set to the number of button presses you want executed. For example, sending CB1
executes the actions associated with a single button press.
The node identification frame is similar to the node discovery response frame; it contains the device’s
address, node identifier string (NI command), and other relevant data. All API devices that receive the
node identification frame send it out their serial interface as a Node Identification Indicator - 0x95.

Associate LED
The Associate pin provides an indication of the device’s network status and diagnostics information.
Connect an LED to the Associate pin as shown in the figure in Commissioning pushbutton and
associate LED. Enable the Associate LED functionality the D5 command to 1 (enabled by default). If the
Associate pin is enabled, it configured as an output.

Joined indication
The Associate pin indicates the network status of a device. If the device is not joined to a network, the
Associate pin is set high. Once the device successfully joins a network, the Associate pin blinks at a
regular time interval. The following figure shows the joined status of a device.

The associate pin can indicate the joined status of a device. Once the device has joined a network, the
associate pin toggles state at a regular interval (∆t). Use the LT command to set the time.

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 168

The LT command defines the blink time of the Associate pin. If it is set to 0, the device uses the default
blink time (500 ms for coordinator, 250 ms for routers and end devices).

Open Join Window indication
The Associate pin indicates when the Network Join Window is open. If the device is allowing joining,
the association led will blink at 100 ms.
See Join window for information on the join window and what circumstances can cause it to open.

Diagnostics support
The Associate pin works with the commissioning pushbutton to provide additional diagnostics
behaviors to aid in deploying and testing a network. If the commissioning push button is pressed once,
and the device has not joined a network, the Associate pin blinks a numeric error code to indicate the
cause of join failure. The number of blinks is equal to (AI value – 0x20). For example, if AI = 0x22, two
blinks occur.
If the commissioning push button is pressed once and the device has joined a network, the device
transmits a broadcast node identification packet. If the Associate LED functionality is enabled (D5
command), a device that receives this transmission will blink its Associate pin rapidly for 1 second.
The following image illustrates the behavior pressing the commissioning button press once when the
device has not joined a network, causing the associate pin to blink to indicate the AI Code where: AI =
blinks + 0x20. In this example, AI = 0x22.

The following image illustrates the behavior pressing the button once on a remote device, causing a
broadcast node identification transmission to be sent. All devices that receive this transmission blink
their associate pin rapidly for one second if the associate LED functionality is enabled (D5 = 1).

Binding
The Digi XBee firmware supports three binding request messages:

n End Device Bind
n Bind
n Unbind

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 169

End_Device_Bind_req
The End Device Bind request (ZDO cluster 0x0020) is described in the Zigbee Specification.
During a deployment, an installer may need to bind a switch to a light. After pressing a commissioning
button sequence on each device, this causes them to send End_Device_Bind_req messages to the
Coordinator within a time window (60 s). The payload of each message is a simple descriptor which
lists input and output clusterIDs. The Coordinator matches the requests by pairing complementary
clusterIDs. After a match has been made, it sends messages to bind the devices together. When the
process is over, both devices will have entries in their binding tables which support indirect addressing
of messages between their bound endpoints.
The coordinator and other devices being setup for binding should have AO set to 3.
R1->C End_Device_Bind_req
R2->C End_Device_Bind_req

R1, R2 send End_Device_Bind_req within 60 s of each other to C
C matches the requests.
C tests one to see if binding is already in place:

R2<-C Unbind_req
R2->C Unbind-rsp (status code - NO_ENTRY)

C proceeds to create binding table entries on the two devices.
R1<-C Bind_req
R1->C Bind_rsp
R2<-C Bind_req
R2->C Bind_rsp

C sends responses to the original End_Device_Bind_req messages.
R1-<C End_Device_Bind_rsp
R2-<C End_Device_Bind_rsp

End Device binding sequence (binding)
This message has a toggle action. If the same two devices were to subsequently send End_Device_
Bind_req messages to the Coordinator, the Coordinator would detect they were already bound, and
then send Unbind_req messages to remove the binding.
An installer can use this to remove a binding which was made incorrectly, say from a switch to the
wrong lamp, by repeating the commissioning button sequence used beforehand.
R1->C End_Device_Bind_req
R2->C End_Device_Bind_req

R1, R2 send End_Device_Bind_req within 60 s of each other to C
C matches the requests.
C tests one to see if binding is already in place:

R2<-C Unbind_req
R2->C Unbind-rsp (status code - SUCCESS)

C proceeds to remove binding table entries from the two devices.
R1<-C Unbind_req
R1->C Unbind_rsp
R2<-C Unbind_req
R2->C Unbind_rsp

C sends responses to the original End_Device_Bind_req messages.

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 170

R1-<C End_Device_Bind_rsp
R2-<C End_Device_Bind_rsp

Example of an End_Device_Bind_req
This example shows a correctly formatted End_Device_Bind_req (ZDO cluster 0x0020) using a Digi
0x11 Explicit API Frame. The coordinator and other devices being setup for binding should have AO set
to 3 andmust send all binding requests within the 60 second binding timeout period.

The frame as a bytelist
7E 00 28 11 01 00 00 00 00 00 00 00 00 FF FE 00 00 00 20 00 00 00 00 03 3B 05 15 95 75 01 FF A2 13 00
D5 05 C1 01 01 00 01 02 00 19

Same frame broken into labeled fields

Note Multibyte fields are represented in big-endian format.

7e Frame Delimiter

0028 Frame Length

11 API Frame Type (Explicit Frame)

01 Frame Identifier (for response
matching)

0000000000000000 Coordinator address

fffe Code for unknown network address

00 Source Endpoint (need not be 0x00)

00 Destination Endpoint (ZDO endpoint)

0020 Cluster 0x0020 (End_Device_Bind_req)

0000 ProfileID (ZDO)

00 Radius (default, maximum hops)

00 Transmit Options

03 3B 05 15 95 75 01 FF A2 13 00 D5 05 C1 01 01 00 01 02
00

RFData (ZDO payload)

19 Checksum

Here is the RFData (the ZDO payload) broken into labeled fields. Note the multi-byte fields of a ZDO
payload are represented in little-endian format.

01 Transaction Sequence Number

3B 05 Binding Target (16 bit network address of sending device)

15 95 75 01 FF A2 13 00 (64 bit address of sending device)

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 171

D5 Source Endpoint on sending device

05c1 ProfileID (0xC105) - used whenmatching End_Device_Bind_requests

01 Number of input clusters

0100 Input cluster ID list (0x0100)

01 Number of output clusters

0200 Output cluster ID list (0x0200)

Bind_req
The Bind request (ZDO cluster 0x0021) is described in the Zigbee Specification. A binding may be coded
for either a unicast or a multicast/groupID message.

Example of an Unbind Req
This example shows a correctly formatted Unbind_req (ZDO cluster 0x0022) using a Explicit
Addressing Command Request - 0x11 sent by the coordinator.

The frame as a bytelist
7E 00 2A 11 01 00 13 A2 FF 01 75 95 15 FF FE 00 00 00 22 00 00 00 00 03 15 95 75 01 FF A2 13 00 D5 01
00 03 22 96 08 71 FF A2 13 00 D5 90

Same frame broken into labeled fields

Note Multibyte fields are represented in big-endian format.

7e Frame Delimiter

0028 Frame Length

11 API Frame Type (Explicit Frame)

01 Frame Identifier (for response
matching)

00 13 A2 FF 01 75 95 15 Device address which has binding
entry

fffe Code for unknown network address

00 Source Endpoint (need not be 0x00)

00 Destination Endpoint (ZDO endpoint)

0022 Cluster 0x0022 (Unbind_req)

0000 ProfileID (ZDO)

00 Radius (default, maximum hops)

00 Transmit Options

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 172

03 15 95 75 01 FF A2 13 00 D5 01 00 03 22 96 08 71 FF A2 13
00 D5

RFData (ZDO payload)

90 Checksum

Here is the RFData (the ZDO payload) broken into labeled fields.

Note The multi-byte fields of a ZDO payload are represented in little-endian format.

03 Transaction Sequence Number

15 95 75 01 FF A2
13 00

64 bit address of the source address used in the R1 end device binding request

D5 Source Endpoint used in the R1 end device binding request

01 00 Output cluster ID used in the R1 end device binding request

03 Fixed value for indicating destination address mode includes endpoint instead
of group address

22 96 08 71 FF A2
13 00

64 bit address of the source address used in the R2 end device binding request

D5 Destination Endpoint used in the R1 end device binding request

Group Table API
Unlike the Binding Table that is managed with ZDO commands, a Zigbee group table is managed by
the Zigbee cluster library Groups Cluster (0x0006) with ZCL commands.
The Digi Zigbee XBee firmware is intended to work with an external processor where a Public
Application Profile with endpoints and clusters is implemented, including a Groups Cluster. Configure
the Zigbee XBee firmware to forward all ZCL commands addressed to this Group Cluster out the UART
(see ATAO3). The XBee Zigbee will not use remote Groups Cluster commands to manage its own
Group Table.
But to implement multicast (group) addressing within the XBee, the external processor must keep the
XBee device's group table state in sync with its own. For this reason, a Group Table API has been
defined where the external processor can manage the state of the XBee 3 Zigbee RF Module group
table.
The design of the Group Table API of the XBee firmware derives from the ZCL Group Cluster 0x0006.
Use the Explicit Addressing Command Request - 0x11 addressed to the Digi Device Object endpoint
(0xE6) with the Digi XBee ProfileID (0xC105) to send commands and requests to the local device.
The Zigbee home automation public application profile says groups should only be used for sets of
more than five devices. This implies sets of five or fewer devices should be managed with multiple
binding table entries.
There are five commands implemented in the API:

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 173

n Add Group command
n View group
n Remove Group
n Remove All Groups

There is a sixth command of the Group Cluster described in the ZCL: Add Group If Identifying. This
command is not supported in this API, because its implementation requires access to the Identify
Cluster, which is not maintained on the XBee. The external processor needs to implement that server
command while using the Group Table API to keep the XBee device's group table in sync using the five
command primitives.

Add Group command
The purpose of the Add Group command is to add a group table entry to associate an active endpoint
with a groupID and optionally a groupName. The groupID is a two byte value. The groupName consists
of zero to 16 ASCII characters.
The following example adds a group table entry which associates endpoint E7 with groupID 1234 and
groupName “ABCD”.
The example packet is given in three parts, the preamble, ZCL Header, and ZCL payload:

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"
The packet is addressed to the local node, using a source endpoint of 0xE6, clusterID of 0x0006, and
profileID of 0xC105. The destination endpoint E7 holds the endpoint parameter for the “Add Group”
command.

ZCL_header = “01 ee 00"
The first field (byte) is a frame control field which specifies a Cluster Specific command (0x01) using a
Client->Server direction(0x00). The second field is a transaction sequence number used to associate
the response with the command request. The third field is the command identifier for “Add Group”
(0x00).

ZCL_payload = “3412 04 41 42 43 44"
The first two bytes is the group Id to add in little endian representation. The next byte is the string
name length (00 if there is no string). The other bytes are the descriptive ASCII string name (“ABCD”)
for the group table entry. The string is represented with its length in the first byte, and the other
bytes containing the ASCII characters.
The example packet in raw hex byte form:

7e001e11010013a2004047b55cfffee6e70006c105000001ee0034120441424344c7
The response in raw hex byte form, consisting of two packets:

7e0018910013a2004047b55cfffee7e68006c1050009ee0000341238
7e00078b01fffe00000076

The response in decoded form:
Zigbee Explicit Rx Indicator
API 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr 0xFFFE SrcEP 0xE7 DestEP 0xE6
ClusterID 0x8006 ProfileID 0xC105 Options 0x00
RF_Data 0x09EE00003412

The response in terms of Preamble, ZCL Header, and ZCL payload:
Preamble = “910013a2004047b55cfffee7e68006c10500”

The packet has its endpoint values reversed from the request, and the clusterID is 0x8006 indicating a
Group cluster response.

ZCL_header = “09 ee 00"

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 174

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Server-
> Client direction. The second field is a transaction sequence number used to associate the response
with the command request. The third field is the command identifier “Add Group” (0x00).

ZCL_payload = “00 3412"
The first byte is a status byte (SUCCESS=0x00). The next two bytes hold the group ID (0x1234) in little
endian form.
This is the decoded secondmessage, which is a Tx Status for the original command request. If the
FrameId value in the original command request had been zero, or if no space was available in the
transmit UART buffer, then no Tx Status message occurs.

Zigbee Tx Status
API 0x8B FrameID 0x01 16DestAddr 0xFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

View group
The purpose of the View Group command is to get the name string which is associated with a
particular endpoint and groupID.
The following example gets the name string associated with the endpoint E7 and groupID 1234.
The packet:

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterID of 0x0006, and
profileID of 0xC105. The destination endpoint E7 is the endpoint parameter for the “View Group”
command.

ZCL_header = “01 ee 01"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Client-
>Server direction(0x00). The second field is a transaction sequence number which is used to associate
the response with the command request. The third field is the command identifier “View Group”
(0x01) .

ZCL_payload = “3412”

The two byte value is the groupID in little-endian representation.
The packet in raw hex byte form:

7e001911010013a2004047b55cfffee6e70006c105000001ee013412d4

The response in raw hex byte form, consisting of two packets:

7e001d910013a2004047b55cfffee7e68006c1050009ee01003412044142434424
7e00078b01fffe00000076

The command response in decoded form:

Zigbee Explicit Rx Indicator
API 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr 0xFFFE SrcEP 0xE7 DestEP 0xE6
ClusterID 0x8006 ProfileID 0xC105 Options 0x00
RF_Data 0x09EE010034120441424344

The response in terms of Preamble, ZCL Header, and ZCL payload:

Preamble = “910013a2004047b55cfffee7e68006c10500”

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 175

The packet has its endpoint values reversed from the request, and the clusterID is 0x8006 indicating a
Group cluster response.

ZCL_header = “09 ee 01"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Server-
>Client direction (0x08). The second field is a transaction sequence number which associates the
response with the command request. The third field is the command identifier “View Group” (0x01) .

ZCL_payload = “00 3412 0441424344"

The first byte is a status byte (SUCCESS=0x00). The next two bytes hold the groupID (0x1234) in little-
endian form. The next byte is the name string length (0x04). The remaining bytes are the ASCII name
string characters (“ABCD”).
The following is the decoded secondmessage, which is a Tx Status for the original command request.
If the FrameId value in the original command request had been zero, or if no space was available in
the transmit UART buffer, then no Tx Status message would occur.

Zigbee Tx Status
API 0x8B FrameID 0x01 16DestAddr 0xFFF
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Get Group Membership (1 of 2)
The purpose of this first form of the Get Group Membership command is to get all the groupIDs
associated with a particular endpoint.
The intent of the example is to get all the groupIDs associated with endpoint E7.
The example packet is given in three parts, the preamble, ZCL Header, and ZCL payload:

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterID of 0x0006, and
profileID of 0xC105. The destination endpoint E7 holds the endpoint parameter for the “Get Group
Membership” command.

ZCL_header = “01 ee 02"

The first field (byte) is a frame control field which specifies a Cluster Specific command (0x02) using a
Client->Server direction(0x00). The second field is a transaction sequence number which is used to
associate the response with the command request. The third field is the command identifier for “Get
Group Membership” (0x02) .

ZCL_payload = “00”

The first byte is the group count. If it is zero, then all groupIDs with an endpoint value which matches
the given endpoint parameter will be returned in the response.
The example packet in raw hex byte form:

7e001811010013a2004047b55cfffee6e70006c105000001ee020019

The response in raw hex byte form, consisting of two packets:

7e0019910013a2004047b55cfffee7e68006c1050009ee02ff01341235

7e00078b01fffe00000076

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 176

The response in decoded form:

Zigbee Explicit Rx Indicator
API 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr 0xFFFE SrcEP 0xE7 DestEP 0xE6
ClusterID 0x8006 ProfileID 0xC105 Options 0x00
RF_Data 0x09EE02FF013412

The response in terms of Preamble, ZCL Header, and ZCL Payload:

Preamble = “910013a2004047b55cfffee7e68006c10500”

The packet has the endpoints reversed from the request, and the clusterID is 0x8006 indicating a
Group cluster response.

ZCL_header = “09 ee 02"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Server-
>Client direction (0x08). The second field is a transaction sequence number which is used to associate
the response with the command request. The third field is the command identifier “Get Group
Membership” (0x02) .

ZCL_payload = “FF 01 3412"

The first byte is the remaining capacity of the group table. 0xFF means unknown. The XBee returns
this value because the capacity of the group table is dependent on the remaining capacity of the
binding table, thus the capacity of the group table is unknown. The second byte is the group count
(0x01). The remaining bytes are the groupIDs in little-endian representation.
The following is the decoded secondmessage, which is a Tx Status for the original command request.
If the FrameId value in the original command request had been zero, or if no space was available in
the transmit UART buffer, then no Tx Status message would occur.

Zigbee Tx Status
API 0x8B FrameID 0x01 16DestAddr 0xFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Get Group Membership (2 of 2)
The purpose of this second form of the Get Group Membership command is to get the set of groupIDs
associated with a particular endpoint which are a subset of a list of given groupIDs.
The following example gets the groupIDs associated with endpoint E7 which are a subset of a given
list of groupIDs (0x1234, 0x5678).
The example packet is given in three parts, the preamble, ZCL Header, and ZCL payload:

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterID of 0x0006, and
profileID of 0xC105. The destination endpoint E7 is the endpoint parameter for the “Get Group
Membership” command.

ZCL_header = “01 ee 02"

The first field (byte) is a frame control field which specifies a Cluster Specific command (0x02) using a
Client->Server direction(0x00). The second field is a transaction sequence number which is used to
associate the response with the command request. The third field is the command identifier for “Get
Group Membership” (0x02) .

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 177

ZCL_payload = “02 34127856"

The first byte is the group count. The remaining bytes are a groupIDs which use little-endian
representation.
The example packet in raw hex byte form:

7e001c11010013a2004047b55cfffee6e70006c105000001ee02023412785603

The response in raw hex byte form, consisting of two packets:

7e0019910013a2004047b55cfffee7e68006c1050009ee02ff01341235
7e00078b01fffe00000076

The response in decoded form:
Zigbee Explicit Rx Indicator

API 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr 0xFFFE SrcEP 0xE7 DestEP
0xE6
ClusterID 0x8006 ProfileID 0xC105 Options 0x00
RF_Data 0x09EE02FF013412

The response in terms of Preamble, ZCL Header, and ZCL Payload:

Preamble = “910013a2004047b55cfffee7e68006c10500”

The packet has the endpoints reversed from the request, the clusterID is 0x8006 indicating a Group
cluster response.

ZCL_header = “09 ee 02"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Server-
>Client direction (0x08). The second field is a transaction sequence number which is used to associate
the response with the command request. The third field is the command identifier “Get Group
Membership” (0x02) .

ZCL_payload = “FF 01 3412"

The first byte is the remaining capacity of the group table. 0xFF means unknown. The XBee returns
this value because the capacity of the group table is dependent on the remaining capacity of the
binding table, thus the capacity of the group table is unknown. The second byte is the group count
(0x01). The remaining bytes are the groupIDs in little-endian representation.
The following is the decoded secondmessage, which is a Tx Status for the original command request.
If the FrameId value in the original command request had been zero, or if no space was available in
the transmit UART buffer, then no Tx Status message occurs.

Zigbee Tx Status
API 0x8B FrameID 0x01 16DestAddr 0xFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Remove Group
The purpose of the Remote Group command is to remove a Group Table entry which associates a
given endpoint with a given groupID.
The intent of the example is to remove the association of groupID [TBD] with endpoint E7.
The example packet is given in three parts: the preamble, ZCL Header, and ZCL payload.

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 178

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterID of 0x0006, and
profileID of 0xC105. The destination endpoint E7 is the endpoint parameter for the “Remove Group”
command.

ZCL_header = “01 ee 03"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Client-
>Server direction(0x00). The second field is a transaction sequence number which is used to associate
the response with the command request. The third field is the command identifier “Remove Group”
(0x03) .

ZCL_payload = “3412”

The two bytes value is the groupID to be removed in little-endian representation.
The packet in raw hex byte form:

7e001911010013a2004047b55cfffee6e70006c105000001ee033412d2

The response in raw hex byte form, consisting of two packets:

7e0018910013a2004047b55cfffee7e68006c1050009ee0300341235
7e00078b01fffe00000076

The command response in decoded form:

Zigbee Explicit Rx Indicator
API 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr 0xFFFE SrcE 0xE DestEP 0xE6
ClusterID 0x8006 ProfileID 0xC105 Options 0x00
RF_Data 0x09EE03003412

The response in terms of Preamble, ZCL Header, and ZCL payload:

Preamble = “910013a2004047b55cfffee7e68006c10500”

The packet has its endpoint values reversed from the request, and the clusterID is 0x8006 indicating a
Group cluster response.

ZCL_header = “09 ee 03"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Server-
>Client direction (0x08). The second field is a transaction sequence number which is used to associate
the response with the command request. The third field is the command identifier “Remove Group”
(0x03) .

ZCL_payload = “00 3412"

The first byte is a status byte (SUCCESS=0x00). The next two bytes is the groupID (0x1234) value in
little- endian form.
The following is the decoded secondmessage, which is a Tx Status for the original command request.
If the FrameId value in the original command request had been zero, or if no space was available in
the transmit UART buffer, then no Tx Status message would occur.

Zigbee Tx Status
API 0x8B FrameID 0x01 16DestAddr 0xFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 179

Remove All Groups
The purpose of the Remove All Groups command is to clear all entries from the group table which are
associated with a target endpoint.
The following example removes all groups associated with endpoint E7.
The packet:

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterId of 0x0006, and
profileID of 0xC105. The destination endpoint E7 is the endpoint parameter for the “Remove All
Groups” command.

ZCL_header = “01 ee 04"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Client-
>Server direction(0x00). The second field is a transaction sequence number which is used to associate
the response with the command request. The third field is the command identifier “Remove All
Groups” (0x04) .

ZCL_payload = “”

No payload is needed for this command.

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 180

The packet in raw hex byte form:

7e001711010013a2004047b55cfffee6e70006c105000001ee0417

The response in raw hex byte form, consisting of two packets:

7e0016910013a2004047b55cfffee7e68006c1050009ee04007c
7e00078b01fffe00000076

The command response in decoded form:

Zigbee Explicit Rx Indicator
API 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr 0xFFFE SrcEP 0xE7 DestEP
0xE6
ClusterID 0x8006 ProfileID 0xC105 Options 0x00
RF_Data 0x09ee0400

The response in terms of Preamble, ZCL Header, and ZCL payload.

Preamble = “910013a2004047b55cfffee7e68006c10500”

The packet has its endpoints values reversed from the request, and the clusterID is 0x8006 indicating
a Group cluster response.

ZCL_header = “09 ee 04"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a Server-
>Client direction (0x08). The second field is a transaction sequence number which is used to associate
the response with the command request. The third field is the command identifier “Remove All
Groups” (0x04) .

ZCL_payload = “00”

The first byte is a status byte (SUCCESS=0x00)[4].
And here is the decoded secondmessage, which is a Tx Status for the original command request. If
the FrameID value in the original command request had been zero, or if no space was available in the
transmit UART buffer, then no Tx Status message would occur.

Zigbee Tx Status
API 0x8B FrameID 0x01 16DestAddr 0xFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Default responses
Many errors are returned as a default response. For example, an RFData payload of a response
containing 08010b788b would be decoded as:

ZCL_header = “08 01 03" - general command/server-to-client, transseqnum=1,
default_response_command(0x03)
ZCL_payload = “78 8b” - original cmdID, status code (0x8b) status not found

Common status codes
This section lists some of the more frequently occurring status codes.

0x00: Command request was successful
0x01: Command request failed - for example,

Network commissioning and diagnostics

Digi XBee® 3 Zigbee® RF Module 181

a call to remove an entry from the group table returned an error
0x80: no RFData in the API frame;
ZCL Payload appears truncated from what is expected
0x81: unexpected direction
in the Frame Control Field of the ZCL Header; unexpected command identifier code
value
in the ZCL header
0x82: unexpected frametype
in the Frame Control Field of the ZCL Header
0x84: unexpected
manufacturer specific indication in the Frame Control Field of the ZCL Header
0x8b: An attempt at Get Group Membership or
Remove Group could not find a matching entry in the group table

Manage End Devices

Zigbee end devices are intended to be battery-powered devices capable of sleeping for extended
periods of time. Since end devices may not be awake to receive RF data at a given time, routers and
coordinators are equipped with additional capabilities (including packet buffering and extended
transmission timeouts) to ensure reliable data delivery to end devices.

End device operation 183
Parent operation 183
Non-Parent device operation 185
End Device configuration 185
Recommended sleep current measurements 194
Transmit RF data 195
Receiving RF data 195
I/O sampling 195
Wake end devices with the Commissioning Pushbutton 195
Parent verification 195
Rejoining 196
Router/Coordinator configuration 196
Short sleep periods 197
Extended sleep periods 197
Sleep examples 198

Digi XBee® 3 Zigbee® RF Module 182

Manage End Devices End device operation

Digi XBee® 3 Zigbee® RF Module 183

End device operation
When an end device joins a Zigbee network, it must find a router or coordinator device that is allowing
end devices to join. Once the end device joins a network, it forms a parent-child relationship with the
end device and the router or coordinator that allowed it to join. For more information, see Zigbee
networks.
When the end device is awake, it sends poll request messages to its parent. When the parent receives
a poll request, it checks a packet queue to see if it has any bufferedmessages for the end device. It
then sends a MAC layer acknowledgment back to the end device that indicates if it has data to send to
the end device or not.

If the end device receives the acknowledgment and finds that the parent has no data for it, the end
device can return to idle mode or sleep. Otherwise, it remains awake to receive the data. This polling
mechanism allows the end device to enter idle mode and turn its receiver off when RF data is not
expected in order to reduce current consumption and conserve battery life.
The end device can only send data directly to its parent. If an end device must send a broadcast or a
unicast transmission to other devices in the network, it sends the message directly to its parent and
the parent performs any necessary route or address discoveries to route the packet to the final
destination.
The parent of the receiving device does not send the network ACK back to the originator until the
sleeping end device wakes and polls the data or until the timeout occurs.

Parent operation
Each router or coordinator maintains a child table that contains the addresses of its end device
children. A router or coordinator that has unused entries in its child table has end device capacity, or
the ability to allow new end devices to join. If the child table is completely filled (such that the number
of its end device children matches the number of child table entries), the device cannot allow any
more end devices to join.
Since the end device children are not guaranteed to be awake at a given time, the parent is
responsible for managing incoming data packets of its end device children. If a parent receives an RF
data transmission destined for one of its end device children, and if the parent has enough unused
buffer space, it buffers the packet. The data packet remains buffered until a timeout expires, or until
the end device sends a poll request to retrieve the data.

Manage End Devices Parent operation

Digi XBee® 3 Zigbee® RF Module 184

The parent can buffer one broadcast transmission for all of its end device children. When the parent
receives and buffers a broadcast transmission, it sets a flag in its child table when each child polls and
retrieves the packet. Once all children have received the broadcast packet, the parent discards the
buffered broadcast packet. If all children have not received a buffered broadcast packet and the
parent receives a new broadcast, it discards the old broadcast packet, clears the child table flags, and
buffers the new broadcast packet for the end device children as shown in the following figure.

When an end device sends data to its parent that is destined for a remote device in the network, the
parent buffers the data packet until it can establish a route to the destination. The parent may
perform a route or 16-bit address discovery of its end device children. Once a route is established, the
parent sends the data transmission to the remote device.

End Device poll timeouts
To better support mobile end devices (end devices that can move within a network), parent router
and coordinator devices have a poll timeout for each end device child. If an end device does not send a
poll request to its parent within the poll timeout, the parent removes the end device from its child
table. This allows the child table on a router or coordinator to better accommodate mobile end
devices in the network.

End Device child table
The child table timeout is controlled by setting the ET (End Device Timeout) on the End Device. The End
Device sends the child table timeout value to the parent when joining a network. The ET setting
should be a value greater than the expected End Device sleep time—see ET (End Device Timeout) for
child table timeout values.

Packet buffer usage
Packet buffer usage on a router or coordinator varies depending on the application. The following
activities can require use of packet buffers for up to several seconds:

n Route and address discoveries
n Application broadcast transmissions
n Stack broadcasts (for example ZDO “Device Announce” messages when devices join a network)
n Unicast transmissions buffered until acknowledgment is received from destination or retries

exhausted
n Unicast messages waiting for end device to wake

Applications that use regular broadcasting or that require regular address or route discoveries use up
a significant number of buffers, reducing the buffer availability for managing packets for end device

Manage End Devices Non-Parent device operation

Digi XBee® 3 Zigbee® RF Module 185

children. Applications can reduce the number of required application broadcasts, and consider
implementing an external address table or many-to-one and source routing if necessary to improve
routing efficiency.

Non-Parent device operation
Devices in the Zigbee network treat data transmissions to end devices differently than transmissions
to other routers and coordinators. When a device sends a unicast transmission, if it does not receive a
network acknowledgment within a timeout, the device resends the transmission. When transmitting
data to remote coordinator or router devices, the transmission timeout is relatively short since these
devices are powered and responsive.
However, since end devices may sleep for some time, unicast transmissions to end devices use an
extended timeout mechanism in order to allow enough time for the end device to wake and receive
the data transmission from its parent.
If a non-parent device does not know the destination is an end device, it uses the standard unicast
timeout for the transmission. However, provisions exist in the Silicon Labs Zigbee stack for the parent
to inform the message sender that the destination is an end device. Once the sender discovers the
destination device is an end device, future transmissions will use the extended timeout. For more
information see Router/Coordinator configuration.

End Device configuration
XBee end devices support four different sleepmodes:

n Pin sleep
n Cyclic sleep
n Cyclic sleep with pin wake-up
n MicroPython sleep (with optional pin wake). For complete details see the Digi MicroPython

Programming Guide.

Pin sleep allows an external microcontroller to determine when the XBee 3 Zigbee RF Module sleeps
and when it wakes by controlling the SLEEP_RQ pin. In contrast, cyclic sleep allows the sleep period
and wake times to be configured through the use of AT commands. Cyclic sleep with pin wake-up is
the same as cyclic sleep except the device can be awakened before the sleep period expires by
lowering the SLEEP_RQ line. The SM command configures the sleepmode. The end device continues
to stay awake as long as DTR is held low. The device resumes its sleeping pattern upon driving DTR
high again.
In both pin and cyclic sleepmodes, XBee end devices poll their parent every 100 ms while they are
awake to retrieve buffered data. When the end device sends a poll request, it enables the receiver
until it receives an acknowledgment from the parent. It typically takes less than 10 ms between
sending the poll request to receiving the acknowledgment. The acknowledgment indicates if the
parent has buffered data for the end device child. If the acknowledgment indicates the parent has
pending data, the end device leaves the receiver on to receive the data. Otherwise, the end device
turns off the receiver and enter idle mode (until it sends the next poll request) to reduce current
consumption (and improve battery life).
Once the device enters sleepmode, the On/Sleep pin (Micro pin 25/SMT pin 26) it de-asserts (low) to
indicate the device is entering sleepmode. If the device enables CTS hardware flow control (D7
command), it de-asserts (high) the CTS pin (Micro pin 24/SMT pin 25) when entering sleep to indicate
that serial data should not be sent to the device.
If the Associate LED pin is configured (D5 command), the associate pin is driven low to avoid using
power to light the LED. The SLEEP_RQ pin is configured as a pulled-down input so that an external

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Manage End Devices End Device configuration

Digi XBee® 3 Zigbee® RF Module 186

device must drive it low to wake the device. All other pins are left unmodified during sleep so that they
can operate as previously configured by the user. The device does not respond to serial or RF data
when it is sleeping.
Applications that must communicate serially to sleeping end devices are encouraged to observe CTS
flow control.
When the device wakes from sleep, it asserts (high) the On/Sleep pin, and if it enables flow control, it
also asserts (low) the CTS pin. The associate LED and all other pins resume their former configured
operation. If the device has not joined a network, it scans all SC channels after waking to try and find a
valid network to join.

Pin sleep
Pin sleep allows the module to sleep and wake according to the state of the DTR/SLEEP_RQ pin (Micro
pin 9/SMT pin 10/TH pin 9). Pin sleepmode is enabled by setting the SM command to 1.
When the device asserts (high) DTR/SLEEP_RQ, it finishes any transmit or receive operations for the
current packet that is processing and enters a low power state. For example, if the device has not
joined a network and SLEEP_RQ is asserted (high), it sleeps once the current join attempt completes
(that is, when scanning for a valid network completes). The device wakes from pin sleep when the
SLEEP_RQ pin is de-asserted (low).
Devices with SPI functionality can use the SPI_SSEL pin instead of D8 for pin sleep control. If D8 = 0
and P7 = 1 , SPI_ SSEL takes the place of DTR/SLEEP_RQ and functions as described above. In order to
use SPI_ SSEL for sleep control while communicating on the UART, the other SPI pins must be disabled
(set P5 , P6 , and P8 to 0). See Low power operation for information on using SPI_SSEL for sleep
control while communicating over SPI.

Sleep pin diagrams
The following figures show the device's sleep pins.

Surface-mount sleep pins

Manage End Devices End Device configuration

Digi XBee® 3 Zigbee® RF Module 187

Through-hole sleep pins

Micro sleep pins

Sleep pin waveform
The following figure show the pin sleep waveforms:

Manage End Devices End Device configuration

Digi XBee® 3 Zigbee® RF Module 188

In the previous figure, t1, t2, t3 and t4 represent the following events:

n t1 - Time when DTR/SLEEP_RQ is asserted (high)
n t2 - Time when the device enters sleep (CTS state change only if hardware flow control is

enabled)
n t3 - Time when DTR/SLEEP_RQ is de-asserted (low) and the device wakes
n t4 - Time when the device sends a poll request to its parent

The time between t1 and t2 varies depending on the state of the module. In the worst case scenario,
if the end device is trying to join a network, or if it is waiting for an acknowledgment from a data
transmission, the delay could be up to a few seconds. The time between t3 and t4 is 1-2 ms for a
regular device and about 6 ms for a PRO device.
When the XBee 3 Zigbee RF Module is awake and is joined to a network, it sends a poll request to its
parent to see if the parent has any buffered data. The end device continues to send poll requests
every 100 ms while it is awake.

Demonstration of pin sleep
Parent and remote devices must be configured to buffer data correctly and to use adequate
transmission timeouts. For more information, see Router/Coordinator configuration.

Cyclic sleep
Cyclic sleep allows the device to sleep for a specified time and wake for a short time to poll its parent
for any buffered data messages before returning to sleep again. Enable cyclic sleepmode by setting
the SM command to 4 or 5. SM5 is a slight variation of SM4 that allows the device to wake up
prematurely by asserting (low) the DTR/SLEEP_RQ pin. In SM5, the XBee 3 Zigbee RF Module can wake
after the sleep period expires, or if a high-to- low transition occurs on the SLEEP_RQ pin. When the
device wakes due to DTR/SLEEP_RQ being asserted (low), the minimum time that it will wake for is ST
(Cyclic Sleep Wake Time) even if DTR/SLEEP_RQ is again de-asserted sooner. Setting SM to 4 disables
the pin wake option.
In cyclic sleep, the device sleeps for a specified time, and then wakes and sends a poll request to its
parent to discover if the parent has any pending data for the end device. If the parent has buffered
data for the end device, or if it receives serial data, the device remains awake for a time. Otherwise, it
enters sleepmode immediately.

Manage End Devices End Device configuration

Digi XBee® 3 Zigbee® RF Module 189

When the device wakes, it asserts (high) the ON/SLEEP line, and de-asserted (low) when the device
sleeps. If you enable hardware flow control (D7 command), the CTS pin asserts (low) when the device
wakes and can receive serial data, and de-assert (high) when the device sleeps.

Cyclic sleep pin diagrams
The following figure shows the device's cyclic sleep pins.

Surface-mount cyclic sleep pins

Manage End Devices End Device configuration

Digi XBee® 3 Zigbee® RF Module 190

Through-hole cyclic sleep pins

Micro cyclic sleep pins

Cyclic sleep pin waveform
The following figure shows the cyclic sleep waveforms.

Manage End Devices End Device configuration

Digi XBee® 3 Zigbee® RF Module 191

In the figure above, t1, t2, and t3 represent the following events:

n t1 - Time when the device wakes from cyclic sleep
n t2 - Time when the device returns to sleep
n t3 - Later time when the device wakes from cyclic sleep

The wake time and sleep time are configurable with software commands.

Wake time (until sleep)
In cyclic sleepmode (SM = 4 or 5), if the device receives serial or RF data, it starts a sleep timer (time
until sleep). Any data received serially or over the RF link restarts the timer. Set the sleep timer value
with ST (Cyclic Sleep Wake Time). While the device is awake, it sends poll request transmissions every
100 ms to check its parent for buffered data messages. The device returns to sleep when the sleep
timer expires, or if it receives SI (Sleep Immediately) as shown in the following image.

Sleep period
Configure the sleep period based on the SP, SN, and SO commands. The following table lists the
behavior of these commands.

Manage End Devices End Device configuration

Digi XBee® 3 Zigbee® RF Module 192

Command Range Description

SP 0x20 - 0xAF0 (x 10 ms)
(320 - 28,000 ms)

Configures the sleep period of the device.

SN 1 - 0xFFFF Configures the number of sleep periods multiplier.

SO 0 - 0xFF Defines options for sleepmode behavior.
0x02 - Always wake for full ST time
0x04 - Enable extended sleep (sleep for full (SP * SN) time)

The device supports both a Short cyclic sleep and an Extended cyclic sleep that make use of these
commands. These two modes allow the sleep period to be configured according to the application
requirements.

Short cyclic sleep
In short cyclic sleepmode, define the sleep behavior of the device by the SP and SN commands, and
the SO commandmust be set to 0x00 (default) or 0x02. In short cyclic sleepmode, the SP command
defines the sleep period and you can set it for up to 28 seconds. When the device enters short cyclic
sleep, it remains in a low power state until the SP time has expired.
After the sleep period expires, the XBee 3 Zigbee RF Module sends a poll request transmission to its
parent to determine if the parent has any buffered data waiting for the end device. Since router and
coordinator devices can buffer data for end device children up to 30 seconds, the SP range (up to 28
seconds) allows the end device to poll regularly enough to receive buffered data. If the parent has
data for the end device, the end device starts its sleep timer (ST) and continues polling every 100 ms
to receive data. If the end device wakes and finds that its parent has no data for it, the end device can
return to sleep immediately.
Use the SN command to control when the On/Sleep line is asserted (high). If you SN to 1 (default), the
On/Sleep line sets high each time the device wakes from sleep. Otherwise, if SN is greater than 1, the
On/ Sleep line only sets high if RF data is received, or after SN wake cycles occur. This allows an
external device to remain powered off until it receives RF data, or until a number of sleep periods have
expired (SN sleep periods). This mechanism allows the device to wake at regular intervals to poll its
parent for data without waking an external device for an extended time (SP * SN time) as shown in
the following figure.

Manage End Devices End Device configuration

Digi XBee® 3 Zigbee® RF Module 193

Note SP controls the packet buffer time on routers and coordinators. Set SP on all router and
coordinator devices to match the longest end device SP time. For more information, see
Router/Coordinator configuration.

Extended cyclic sleep
In extended cyclic sleep operation, an end device can sleep for a multiple of SP time which can extend
the sleep time up to several days. Configure the sleep period using the SP and SN commands. The
total sleep period is equal to (SP * SN) where SP is measured in 10ms units. The SO commandmust be
set correctly to enable extended sleep.
Since routers and coordinators can only buffer incoming RF data for their end device children for up to
30 seconds, if an end device sleeps longer than 30 seconds, devices in the network need some
indication when an end device is awake before they can send data to it. End devices that use extended
cyclic sleep should send a transmission (such as an I/O sample) when they wake to inform other
devices that they are awake and can receive data. We recommended that extended sleep end devices
set SO to wake for the full ST time to provide other devices with enough time to sendmessages to the
end device.
Similar to short cyclic sleep, end devices running in this mode return to sleep when the sleep timer
expires, or when they receive the SI command.

Deep sleep
The following are preconditions for maintaining low current draw during sleep:

n You must maintain the supply voltage within a valid operating range (2.1 to 3.6 V for the XBee,
3.0 to 3.6 V for the XBee-PRO (S2), 2.7 to 3. V for the XBee-PRO S2B).

n Each GPIO input line with a pullup resistor which is driven low draws about 100 uA current
through the internal pullup resistor.

n If circuitry external to the XBee drives such input lines low, then the current draw rises above
expected deep sleep levels.

Manage End Devices Recommended sleep current measurements

Digi XBee® 3 Zigbee® RF Module 194

n Each GPIO input line that has no pullup or pull-down resistor (is floating) has an indeterminate
voltage which can change over time and temperature in an indeterminate manner.

MicroPython (with optional pin wake)
The MicroPython sleep option allows a user's MicroPython program to exclusively control the device
sleep operation (with optional pin wake). For complete details see the Digi MicroPython Programming
Guide.

Recommended sleep current measurements
Properly measuring the sleep current helps to accurately estimate battery life requirements. To
ensure that you take proper measurements without upsetting the normal operation of the unit under
test, read the following steps.
When you measure sleep currents, it can cause problems with the devices because the equipment
that measures very low currents accurately requires a large resistor in series with the power supply.
This large resistor starves current from the device during a momentary wake cycle, forcing the
voltage to drop to brownout levels rapidly. This voltage drop places the device in a state that may
require a reset to resolve the problem.

Achieve the lowest sleep current
To achieve the lowest sleep current, you must disable brownout detectors during sleepmodes. Even if
the measurement equipment automatically changes current ranges, it is often too slow and cannot
keep up with the necessary sudden short bursts. During long cyclic sleep periods, the device can wake
every 10 to 30 seconds to reset timers and perform other necessary steps. These wake times are
small and you may not notice them whenmeasuring sleep currents.

Compensate for switching time
To compensate for the switching time of the equipment you must temporarily add an additional large
cap when you needmeasurements to allow for short pulses of current draw (see the following
schematic for details). A cap of 100 uF is enough to handle 1.5 milliseconds with 20 mA of current. You
can increase or decrease the capacitor based on the switching time of the measurement circuitry and
the momentary on time of the unit. Measure the leakage current of the additional cap to verify that it
does not skew the low current reading. The capacitor averages the spike in current draw. The actual
magnitude of the current spike is no longer visible, but you can account for the total energy consumed
by integrating the current over time andmultiplying by the voltage.

Internal pin pull-ups
Internal pull-up/down resistors only apply to GPIO lines that are configured as disabled (0) or digital
input (3). Use PR (Pull-up/Down Resistor Enable) to enable them on a per-pin basis and use PD (Pull
Up/Down Direction) to determine the direction.
Internal pin pull-ups can pull excess current and cause the sleep current readings to be higher than
desired if you drive or float the pull-ups.

n Disable all pull-ups for input lines that have a low driven state during sleep.
n Enable pull-ups for floating lines or inputs that do not connect to other circuitry.

If you use an analog-to-digital converter (ADC) to read the analog voltage of a pin, it may not be
possible to stop all leakage current unless you can disconnect the voltage during sleep. Each floating

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Manage End Devices Transmit RF data

Digi XBee® 3 Zigbee® RF Module 195

input that is not at a valid high or low level can cause leakage depending on the temperature and
charge buildup that you may not observe at room temperature.

Transmit RF data
An end device may transmit data when it wakes from sleep and has joined a network. End devices
transmit directly to their parent and then wait for an acknowledgment to be received. The parent
performs any required address and route discoveries to help ensure the packet reaches the intended
destination before reporting the transmission status to the end device.

Receiving RF data
After waking from sleep, an end device sends a poll request to its parent to determine if the parent
has any buffered data for it. In pin sleepmode, the end device polls every 100 ms while the Sleep_RQ
pin is de-asserted (low). In cyclic sleepmode, the end device will only poll once before returning to
sleep unless the sleep timer (ST) is started (serial or RF data is received). If the sleep timer is started,
the end device will continue to poll every 100 ms until the sleep timer expires.
This firmware includes an adaptive polling enhancement where, if an end device receives RF data from
its parent, it sends another poll after a very short delay to check for more data. The end device
continues to poll at a faster rate as long as it receives data from its parent. This feature greatly
improves data throughput to end devices. When the end device no longer receives data from its
parent, it resumes polling every 100 ms.

I/O sampling
End devices can be configured to send one or more I/O samples when they wake from sleep. To
enable I/O sampling on an end device, the IR commandmust be set to a non-zero value, and at least
one analog or digital I/O pin must be enabled for sampling (D0 - D9, P0 - P4 commands). If I/O
sampling is enabled, an end device sends an I/O sample when it wakes and starts the ST timer. It will
continue sampling at the IR rate until the sleep timer (ST) has expired. For more information, see
Analog and digital I/O lines.

Wake end devices with the Commissioning Pushbutton
If you use D0 (DIO0/AD0/Commissioning Button Configuration) to enable the Commissioning
Pushbutton functionality, a high-to-low transition on the AD0/DIO0 pin (Micro pin 31/SMT pin 33/TH pin
20) causes an end device to wake for 30 seconds. For more information, see Commissioning
pushbutton and associate LED.

Parent verification
Since an end device relies on its parent to maintain connectivity with other devices in the network,
XBee end devices include provisions to verify the connection with its parent. End devices monitor the
link with their parent when sending poll messages and after a power cycle or reset event as described
below.
When an end device wakes from sleep, it sends a poll request to its parent. In cyclic sleep, if the end
device does not receive RF or serial data and the sleep timer is not started, it polls one time and
returns to sleep for another sleep period. Otherwise, the end device continues polling every 100ms. If
the parent does not send an acknowledgment response to three consecutive poll request
transmissions, the end device assumes the parent is out of range, and attempts to find a new parent.

Manage End Devices Rejoining

Digi XBee® 3 Zigbee® RF Module 196

After a power-up or reset event, the end device does an orphan scan to locate its parent. If the parent
does not send a response to the orphan scan, the end device attempts to find a new parent.

Rejoining
Once all devices have joined a Zigbee network, disable the permit-joining attribute disabled such that
new devices are no longer allowed to join the network. You can enable permit-joining later as needed
for short times. This provides some protection in preventing other devices from joining a live network.
If an end device cannot communicate with its parent, the end device must be able to join a new parent
to maintain network connectivity. However, if permit-joining is disabled in the network, the end device
will not find a device that is allowing new joins.
To overcome this problem, Zigbee supports rejoining, where an end device can obtain a new parent in
the same network even if joining is not enabled. When an end device joins using rejoining, it performs a
PAN ID scan to discover nearby networks. If a network is discovered that has the same 64-bit PAN ID
as the end device, it joins the network by sending a rejoin request to one of the discovered devices.
The device that receives the rejoin request sends a rejoin response if it can allow the device to join the
network (that is, the child table is not full). You can use the rejoin mechanism to allow a device to join
the same network even if permit-joining is disabled.
To enable rejoining, set NJ to less than 0xFF on the device joining. If NJ < 0xFF, the device assumes
the network is not allowing joining and first tries to join a network using rejoining. If multiple rejoining
attempts fail, or if NJ = 0xFF, the device attempts to join using association.

Router/Coordinator configuration
XBee routers and coordinators may require some configuration to ensure the following are set
correctly.

n RF Packet buffering timeout
n Child poll timeout
n Transmission timeout

The value of these timeouts depends on the sleep time used by the end devices.

RF packet buffering timeout
When a router or coordinator receives an RF data packet intended for one of its end device children, it
buffers the packet until the end device wakes and polls for the data, or until a packet buffering
timeout occurs. Use the SP command to set the timeout . The actual timeout is (1.2 * SP), with a
minimum timeout of 1.2 seconds and a maximum of 30 seconds. Since the packet buffering timeout is
set slightly larger than the SP setting, set SP the same on routers and coordinators as it is on cyclic
sleep end devices. For pin sleep devices, set SP as long as the pin sleep device can sleep, up to 30
seconds.

Note In pin sleep and extended cyclic sleep, end devices can sleep longer than 30 seconds. If end
devices sleep longer than 30 seconds, parent and non-parent devices must know when the end device
is awake in order to reliably send data. For applications that require sleeping longer than 30 seconds,
end devices should transmit an I/O sample or other data when they wake to alert other devices that
they can send data to the end device.

Manage End Devices Short sleep periods

Digi XBee® 3 Zigbee® RF Module 197

Child poll timeout
Router and coordinator devices maintain a timestamp for each end device child indicating when the
end device sent its last poll request to check for buffered data packets. If an end device does not send
a poll request to its parent for a certain period of time, the parent will discard the packet.
Set the child poll timeout with the SP and SN commands. SP and SN should be set such that SP * SN
matches the longest expected sleep time of any end devices in the network. The device calculates the
actual timeout as (3* SP * SN), with a minimum of five seconds. For networks consisting of pin sleep
end devices, set the SP and SN values on the coordinator and routers so the SP * SN matches the
longest expected sleep period of any pin sleep device.

Adaptive polling
PO (Polling Rate) determines the regular polling rate. However, if RF data has been recently received
by an end device, it is likely that more RF data could be on the way. Therefore, the end device polls at
a faster rate, gradually decreasing its adaptive poll rate until polling resumes at the regular rate as
defined by the PO command.

Transmission timeout
When you are sending RF data to a remote router, because routers are always on, the timeout is
based on the number of hops the transmission may traverse. Set the timeout using NH (Maximum
Unicast Hops). For more information, see Transmission, addressing, and routing.
Since end devices may sleep for lengthy periods of time, the transmission timeout to end devices also
allows for the sleep period of the end device. When sending data to a remote end device, the
transmission timeout is calculated using the SP andNH commands. If the timeout occurs with no
acknowledgment received, the source device re-sends the transmission until it receives an
acknowledgment, up to two more times.
The transmission timeout per attempt is:

3 * ((unicast router timeout) + (end device sleep time))
3 * ((50 * NH) + (1.2 * SP)), where SP is measured in 10 ms units.

Short sleep periods
Pin and cyclic sleep devices that sleep less than 30 seconds can receive data transmissions at any
time since their parent devices are able to buffer data long enough for the end devices to wake and
poll to receive the data. Set SP the same on all devices in the network. If end devices in a network
have more than one SP setting, set SP on the routers and coordinators to match the largest SP
setting of any end device. This ensure the RF packet buffering, poll timeout, and transmission
timeouts are set correctly.

Extended sleep periods
Pin and cyclic sleep devices that might sleep longer than 30 seconds cannot receive data
transmissions reliably unless you take certain design approaches. Specifically, the end devices should
use I/O sampling or another mechanism to transmit data when they wake to inform the network they
can receive data. SP and SN should be set on routers and coordinators such that (SP * SN) matches
the longest expected sleep time.
As a general rule, SP and SN should be set the same on all devices in almost all cases.

Manage End Devices Sleep examples

Digi XBee® 3 Zigbee® RF Module 198

Sleep examples
Some sample XBee configurations to support different sleepmodes follow. In Commandmode, issue
each command with a leading AT and no = sign, for example, ATSM4. In the API, the two byte
command is used in the command field, and parameters are populated as binary values in the
parameter field.

Example 1: Configure a device to sleep for 20 seconds, but set SN
such that the On/sleep line will remain de-asserted for up to 1
minute.
The following settings should be configured on the end device.

n SM = 4 (cyclic sleep) or 5 (cyclic sleep, pin wake).
n SP = 0x7D0 (2000 decimal). This causes the end device to sleep for 20 seconds since SP is

measured in units of 10 ms.
n SN = 3. (With this setting, the On/Sleep pin asserts once every 3 sleep cycles, or when it

receives RF data) SO = 0.

Set all router and coordinator devices on the network SP to match SP on the end device. This set the
RF packet buffering times and transmission timeouts correctly.
Since the end device wakes after each sleep period (SP), you can set the SN command to 1 on all
routers and the coordinator.

Example 2: Configure an end device to sleep for 20 seconds, send 4
I/O samples in 2 seconds, and return to sleep.
Because SP is measured in 10 ms units, and ST and IR are measured in 1 ms units, configure an end
device with the following settings:

n SM = 4 (cyclic sleep) or 5 (cyclic sleep, pin wake).
n SP = 0x7D0 (2000 decimal). This causes the end device to sleep for 20 seconds.
n SN = 1.
n SO = 0.
n ST = 0x7D0 (2000 decimal). This sets the sleep timer to 2 seconds.
n IR = 0x258 (600 decimal). Set IR to a value greater than (2 seconds / 4) to get 4 samples in 2

seconds. The end device sends an I/O sample at the IR rate until the sleep timer has expired.

You must enable at least one analog or digital I/O line for I/O sampling to work. To enable AD1/DIO1
(Micro pin 30/SMT pin 32/TH pin 19) as a digital input line, you must set the following:
D1 = 3
Set all router and coordinator devices on the network SP to match SP on the end device. This ensures
that RF packet buffering times and transmission timeouts are set correctly.

Manage End Devices Sleep examples

Digi XBee® 3 Zigbee® RF Module 199

Example 3: configure a device for extended sleep: to sleep for 4
minutes.

n SP and SN must be set such that SP * SN = 4 minutes. Since SP is measured in 10 ms units, use
the following settings to obtain 4 minute sleep.

n SM = 4 (cyclic sleep) or 5 (cyclic sleep, pin wake) SP = 0x7D0 (2000 decimal, or 20 seconds).
n SN = 0x0B (12 decimal).
n SO = 0x04 (enable extended sleep).

With these settings, the module sleeps for SP * SN time, or (20 seconds * 12) = 240 seconds = 4
minutes.
For best results, the end device should send a transmission when it wakes to inform the coordinator
(or network) when it wakes. It should also remain awake for a short time to allow devices to send
data to it. The following are recommended settings.

n ST = 0x7D0 (2 second wake time)
n SO = 0x06 (enable extended sleep and wake for ST time)
n IR = 0x800 (send 1 I/O sample after waking). Enable at least one analog or digital I/O sample

enabled for I/O sampling.

With these settings, the end device wakes after 4 minutes and sends 1 I/O sample. It then remains
awake for 2 seconds before returning to sleep.
Set SP and SN to the same values on all routers and coordinators that could potentially allow the end
device to join. This ensures the parent does not timeout the end device from its child table too quickly.
The SI command can optionally be sent to the end device to cause it to sleep before the sleep timer
expires.

I/O support

The following topics describe analog and digital I/O line support, line passing and output control.

Digital I/O support 201
Analog I/O support 201
Monitor I/O lines 202
I/O sample data format 203
API frame support 204
On-demand sampling 204
Periodic I/O sampling 206
Digital I/O change detection 207
I/O behavior during sleep 207

Digi XBee® 3 Zigbee® RF Module 200

I/O support Digital I/O support

Digi XBee® 3 Zigbee® RF Module 201

Digital I/O support
Digital I/O is available on lines DIO0 through DIO12 (D0 (DIO0/AD0/Commissioning Button
Configuration) - D9 (DIO9/ON_SLEEP) and P0 (DIO10/RSSI Configuration) - P4 (DIO14/DIN
Configuration)). Digital sampling is enabled on these pins if configured as 3, 4, or 5 with the following
meanings:

n 3 is digital input.
l Use PR (Pull-up/Down Resistor Enable) to enable internal pull up/down resistors for each

digital input. Use PD (Pull Up/Down Direction) to determine the direction of the internal pull
up/down resistor. All disabled and digital input pins are pulled up by default.

n 4 is digital output low.
n 5 is digital output high.

Function Micro Pin SMT Pin TH Pin AT Command

DIO0 31 33 20 D0 (DIO0/AD0/Commissioning Button Configuration)

DIO1 30 32 19 D1 (AD1/DIO1/TH_SPI_ATTN Configuration)

DIO2 29 31 18 D2 (DIO2/AD2/TH_SPI_CLK Configuration)

DIO3 28 30 17 D3 (DIO3/AD3/TH_SPI_SSEL Configuration)

DIO4 23 24 11 D4 (DIO4/TH_SPI_MOSI Configuration)

DIO5 26 28 15 D5 (DIO5/Associate Configuration)

DIO6 27 29 16 D6 (DIO6/RTS)

DIO7 24 25 12 D7 (DIO7/CTS)

DIO8 9 10 9 D8 (DIO8/DTR/SLP_RQ)

DIO9 25 26 13 D9 (DIO9/ON_SLEEP)

DIO10 7 7 6 P0 (DIO10/RSSI Configuration)

DIO11 8 8 7 P1 (DIO11 Configuration)

DIO12 5 5 4 P2 (DIO12/TH_SPI_MISO Configuration)

DIO13 3 3 2 P3 (DIO13/DOUT Configuration)

DIO14 4 4 3 P4 (DIO14/DIN Configuration)

I\O sampling is not available for pins P5 through P9. See the XBee 3 Hardware Reference Manual for full
pinouts and functionality.

Analog I/O support
Analog input is available on D0 through D3. Configure these pins to 2 (ADC) to enable analog sampling.
PWM output is available on P0 and P1, which can be used for Analog line passing. Use M0 (PWM0 Duty
Cycle) and M1 (PWM1 Duty Cycle) to set a fixed PWM level.

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

I/O support Monitor I/O lines

Digi XBee® 3 Zigbee® RF Module 202

Function Micro Pin SMT Pin TH Pin AT Command

ADC0 31 33 20 D0 (DIO0/AD0/Commissioning Button Configuration)

ADC1 30 32 19 D1 (AD1/DIO1/TH_SPI_ATTN Configuration)

ADC2 29 31 18 D2 (DIO2/AD2/TH_SPI_CLK Configuration)

ADC3 28 30 17 D3 (DIO3/AD3/TH_SPI_SSEL Configuration)

PWM0 7 7 6 P0 (DIO10/RSSI Configuration)

PWM1 8 8 7 P1 (DIO11 Configuration)

AV (Analog Voltage Reference) specifies the analog reference voltage used for the 10-bit ADCs. Analog
sample data is represented as a 2-byte value. For a 10-bit ADC, the acceptable range is from 0x0000
to 0x03FF. To convert this value to a useful voltage level, apply the following formula:

ADC / 1023 (vREF) = Voltage

Note ADCs sampled through MicroPython will have 12-bit resolution.

Example
An ADC value received is 0x01AE; to convert this into a voltage the hexadecimal value is first converted
to decimal (0x01AE = 430). Using the default AV reference of 1.25 V, apply the formula as follows:

430 / 1023 (1.25 V) = 525 mV

Monitor I/O lines
You can monitor pins you configure as digital input, digital output, or analog input and generate I/O
sample data. If you do not define inputs or outputs, no sample data is generated.
Typically, I/O samples are generated by configuring the device to sample I/O pins periodically (based
on a timer) or when a change is detected on one or more digital pins. These samples are always sent
over the air to the destination address specified with DH (Destination Address High) and DL
(Destination Address Low).
You can also gather sample data using on-demand sampling, which allows you to interrogate the state
of the device's I/O pins by issuing an AT command. You can do this on either a local or remote
device via an AT command request.
The three methods to generate sample data are:

n Periodic sample (IR (I/O Sample Rate))
l Periodic sampling based on a timer
l Samples are taken immediately upon wake (excluding pin sleep)
l Sample data is sent to DH+DL destination address
l Can be used with line passing
l Requires API mode on receiver

n Change detect (IC (Digital Change Detection))
l Samples are generated when the state of specified digital input pin(s) change
l Sample data is sent to DH+DL destination address

I/O support I/O sample data format

Digi XBee® 3 Zigbee® RF Module 203

l Can be used with line passing
l Requires API mode on receiver

n On-demand sample (IS (Force Sample))
l Immediately query the device’s I/O lines
l Can be issued locally in Command Mode
l Can be issued locally or remotely in API mode

These methods are not mutually exclusive and you can use them in combination with each other.

I/O sample data format
Regardless of how I/O data is generated, the format of the sample data is always represented as a
series of bytes in the following format:

Bytes Name Description

1 Sample
sets

Number of sample sets. There is always one sample set per frame.

2 Digital
channel
mask

Indicates which digital I/O lines have sampling enabled. Each bit corresponds
to one digital I/O line on the device.
bit 0 = DIO0
bit 1 = DIO1
bit 2 = DIO2
bit 3 = DIO3
bit 4 = DIO4
bit 5 = DIO5
bit 6 = DIO6
bit 7 = DIO7
bit 8 = DIO8
bit 9 = DIO9
bit 10 = DIO10
bit 11 = DIO11
bit 12 = DIO12
bit 13 = DIO13
bit 14 = DIO14
bit 15 = N/A
Example: a digital channel mask of 0x002F means DIO0, 1, 2, 3 and 5 are
configured as digital inputs or outputs.

1 Analog
channel
mask

Indicates which lines have analog inputs enabled for sampling. Each bit in the
analog channel mask corresponds to one analog input channel. If a bit is set,
then a corresponding 2-byte analog data set is included.
bit 0 = AD0/DIO0
bit 1 = AD1/DIO1
bit 2 = AD2/DIO2
bit 3 = AD3/DIO3

I/O support API frame support

Digi XBee® 3 Zigbee® RF Module 204

Bytes Name Description

2 Digital
data set

Each bit in the digital data set corresponds to a bit in the digital channel
mask and indicates the digital state of the pin, whether high (1) or low (0).
If the digital channel mask is 0x0000, then these two bytes are omitted as no
digital I/O lines are enabled.

2 Analog
data set
(multiple)

Each enabled ADC line in the analog channel mask will have a separate 2-
byte value based on the number of ADC inputs on the originating device. The
data starts with AD0 and continues sequentially for each enabled analog
input channel up to AD3.
If the analog channel mask is 0x00, then no analog sample bytes is included.

API frame support
I/O samples generated using Periodic I/O sampling (IR) and Digital I/O change detection (IC) are
transmitted to the destination address specified by DH and DL. In order to display the sample data,
the receiver must be operating in API mode (AP = 1 or 2). The sample data is represented as an I/O
sample API frame.
See I/O Sample Indicator - 0x92 for more information on the frame's format and an example.

On-demand sampling
You can use IS (Force Sample) to query the current state of all digital I/O and ADC lines on the device
and return the sample data as an AT command response. If no inputs or outputs are defined, the
command returns an ERROR.
On-demand sampling can be useful when performing initial deployment, as you can send IS locally to
verify that the device and connected sensors are correctly configured. The format of the sample data
matches what is periodically sent using other sampling methods. You can also send IS remotely using
a remote AT command. When sent remotely from a gateway or server to each sensor node on the
network, on-demand sampling can improve battery life and network performance as the remote node
transmits sample data only when requested instead of continuously.
If you send IS using Commandmode, then the device returns a carriage return delimited list
containing the I/O sample data. If IS is sent either locally or remotely via an API frame, the I/O sample
data is presented as the parameter value in the AT command response frame (Description or Remote
AT Command Response- 0x97).

Example: Command mode
An IS command sent in Commandmode returns the following sample data:

Output Description

01 One sample set

0C0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

I/O support On-demand sampling

Digi XBee® 3 Zigbee® RF Module 205

Output Description

0408 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and DIO11 are low

03D0 Analog sample data for AD0

0124 Analog sample data for AD1

Example: Local AT command in API mode
The IS command sent to a local device in API mode would use a Local AT Command Request -
0x08 or Queue Local AT Command Request - 0x09 frame:

7E 00 04 08 53 49 53 08
The device responds with a Description that contains the sample data:

7E 00 0F 88 53 49 53 00 01 0C 0C 03 04 08 03 D0 01 24 68

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 0F Length Length of the packet

88 Frame type AT Command response frame

53 Frame ID This ID corresponds to the Frame ID of the 0x08 request

49 53 AT Command Indicates the AT command that this response corresponds to
0x49 0x53 = IS

00 Status Indicates success or failure of the AT command
00 = OK
if no I/O lines are enabled, this will return 01 (ERROR)

01

I/O sample
data

One sample set

0C 0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

04 08 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and
DIO11 are low

03 D0 Analog sample data for AD0

01 24 Analog sample data for AD1

68 Checksum Can safely be discarded on received frames

Example: Remote AT command in API mode
The IS command sent to a remote device with an address of 0013A200 12345678 uses a Remote AT
Command Request - 0x17:

I/O support Periodic I/O sampling

Digi XBee® 3 Zigbee® RF Module 206

7E 00 0F 17 87 00 13 A2 00 12 34 56 78 FF FE 00 49 53 FF
The sample data from the device is returned in a Remote AT Command Response- 0x97 frame with
the sample data as the parameter value:

7E 00 19 97 87 00 13 A2 00 12 34 56 78 00 00 49 53 00 01 0C 0C 03 04 08 03 FF 03 FF 50

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 19 Length Length of the packet

97 Frame type Remote AT Command response frame

87 Frame ID This ID corresponds to the Frame ID of the 0x17 request

0013A200
12345678

64-bit
source

The 64-bit address of the node that responded to the request

0000 16-bit
source

The 16-bit address of the node that responded to the request

49 53 AT
Command

Indicates the AT command that this response corresponds to
0x49 0x53 = IS

00 Status Indicates success or failure of the AT command
00 = OK
if no I/O lines are enabled, this will return 01 (ERROR)

01

I/O sample
data

One sample set

0C 0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

04 08 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2
and DIO11 are low

03 D0 Analog sample data for AD0

01 24 Analog sample data for AD1

50 Checksum Can safely be discarded on received frames

Periodic I/O sampling
Periodic sampling allows a device to take an I/O sample and transmit it to a remote device at a
periodic rate.

Source
Use IR (I/O Sample Rate) to set the periodic sample rate for enabled I/O lines.

I/O support Digital I/O change detection

Digi XBee® 3 Zigbee® RF Module 207

n To disable periodic sampling, set IR to 0.
n For all other IR values, the device samples data when IR milliseconds elapse and transmits the

sampled data to the destination address.

The DH (Destination Address High) and DL (Destination Address Low) commands determine the
destination address of the I/O samples. You must configure at least one pin as a digital I/O or ADC
input on the sending node to generate sample data.

Destination
If the receiving device is operating in API operating mode the I/O sample data format is emitted out of
the serial port. Devices that are in Transparent operating mode discard the I/O data samples they
receive unless you enable line passing.

Digital I/O change detection
You can configure devices to transmit a data sample immediately whenever a monitored digital I/O
pin changes state. IC (Digital Change Detection) is a bitmask that determines which digital I/O lines to
monitor for a state change. If you set one or more bits in IC, the device transmits an I/O sample as
soon it observes a state change on the monitored digital I/O line(s) using edge detection.
Change detection is only applicable to digital I/O pins that are configured as digital input (3) or digital
output (4 or 5).
The figure below shows how I/O change detection can work in combination with Periodic I/O
sampling to improve sampling accuracy. In the figure, the gray dashed lines with a dot on top
represent samples taken from the monitored DIO line. The top graph shows only periodic IR samples,
the bottom graph shows a combination of IR periodic samples and IC detected changes. In the top
graph, the humps indicate that the sample was not taken at that exact moment and needed to wait
for the next IR sample period.

Note Use caution when combining change detect sampling with sleepmodes. IC only causes a sample
to be generated if a state change occurs during a wake period. If the device is sleeping when the
digital transition occurs, then no change is detected and an I/O sample is not generated.
Use periodic sampling with IR in conjunction with IC in this instance, since IR generates an I/O sample
upon wakeup and ensures that the change is properly observed.

I/O behavior during sleep
When the device sleeps (SM ! = 0) the I/O lines are optimized for a minimal sleep current.

I/O support I/O behavior during sleep

Digi XBee® 3 Zigbee® RF Module 208

Digital I/O lines
Digital I/O lines set as digital output high or low maintain those values during sleep. Disabled or input
pins continue to be controlled by the PR/PD settings. Peripheral pins (with the exception of CTS) are
set low during sleep and SPI pins are set high. Peripheral and SPI pins resume normal operation upon
wake.
Digital I/O lines that have been set using I/O line passing hold their values during sleep, however the
digital timeout timer (T0 through T9, andQ0 through Q2) are suspended during sleep and resume
upon wake.

Analog and PWM I/O Lines
Lines configured as analog inputs or PWM output are not affected during sleep. PWM lines are shut
down (set low) during sleep and resume normal operation upon wake.
PWM output pins set by analog line passing are shutdown during sleep and revert to their preset
values (M0 andM1) on wake. This happens regardless of whether the timeout has expired or not.

AT commands

Networking commands 210
Discovery commands 216
Operating Network commands 220
Zigbee Addressing commands 221
Zigbee configuration commands 224
Security commands 227
Secure Session commands 232
RF interfacing commands 233
MAC diagnostics commands 235
Sleep settings commands 236
MicroPython commands 239
File System commands 241
Bluetooth Low Energy (BLE) commands 243
API configuration commmands 245
UART interface commands 247
AT Command options 249
UART pin configuration commands 250
SMT/MMT SPI interface commands 252
I/O settings commands 254
I/O sampling commands 263
Location commands 265
Diagnostic commands - firmware/hardware information 266
Memory access commands 268
Custom Default commands 269

Digi XBee® 3 Zigbee® RF Module 209

AT commands Networking commands

Digi XBee® 3 Zigbee® RF Module 210

Networking commands
This section lists the AT commands that affect the operation of the Zigbee network and joining device
behavior.

CE (Device Role)
Determines whether the device should form or join a network.
When forming a network, the device acts as a Zigbee network manager/coordinator. Sleepmust be
disabled before CE can be set.
Changing CE after network association causes the device to leave the network.

Parameter range
0 - 1

Parameter Description

0 Join Network

1 Form Network (SMmust be 0 to set CE to 1)

Default
0

ID (Extended PAN ID)
The preconfigured Extended PAN ID used when forming or joining a network.
ID restricts joining to only networks with a matching Operating Pan (OP) value. If ID is set to 0, the
device attempt to join any open network.
When forming a network (CE = 1), ID preconfigures the Extended PAN ID used to form the network.
When you set ID to 0, a random Extended PAN ID is generated.
Changing ID after network association causes the device to leave the network.

Parameter range
0 - 0xFFFFFFFFFFFFFFFF

Default
0

II (Initial 16-bit PAN ID)
The preconfigured 16-bit PAN ID used when forming a network. Use this command to replace a
coordinator node on an existing unencrypted Zigbee network.
When you set II to the default value (recommended) the device forms a network on a random 16-bit
PAN ID.
Changing II on the coordinator after the network is formed causes it to leave and form a new
network.

Range
0 - 0xFFFF

AT commands Networking commands

Digi XBee® 3 Zigbee® RF Module 211

Default
0xFFFF

ZS (Zigbee Stack Profile)
Set or read the initial Zigbee stack profile used by the device. This parameter must be the same on all
devices joining the same network. If XBee devices are the only type of radio on your network, leave ZS
at the default value of 0; a non-zero value allows third-party Zigbee devices to join.
If operating in Commandmode, any changes to ZS is made active only when Commandmode exits (via
timeout or CN (Exit Commandmode)). Changing ZS causes all current parameters to be written to
persistent storage and the module restarts; this is equivalent to issuing WR and FR commands.
When the device restarts as a result of changing ZS or C8, no modem status is generated. CTS will also
de-assert during this period, so flow control is advised. If hardware flow control is not being used, a 1-
second delay after exiting Commandmode (or applying changes if using API) may be necessary to
avoid data loss.
Changing ZS after network association causes the device to leave the network.

Parameter range
0 - 2

Parameter Description

0 Digi Proprietary

1 Zigbee 2006 (legacy)

2 Zigbee-PRO (third-party)

Default
0

CR (Conflict Report)
The number of PAN ID conflict reports that must be received by the network manager within one
minute to trigger a PAN ID change.
A corrupt beacon can cause a report of a false PAN ID conflict.
A higher value reduces the chance of a false PAN ID change.
A value of zero disables automatically changing the PAN ID due to PAN ID conflicts. In this case, if a
PAN ID conflict is detected and API mode is enabled (AP = 1 or 2), the coordinator will emit a modem
status value of 0x3E.

Parameter range
0 - 0x3F

Default
3

AT commands Networking commands

Digi XBee® 3 Zigbee® RF Module 212

NJ (Node Join Time)
Configure the amount of time the local device’s join window is open for. The join window specified by
NJ only affects the window for the local node and does not affect the timing of the rest of the
network. This value can be changed at run time without requiring a Coordinator or Router to restart.
Zigbee 3.0 does not allow the network to be always open for joining; modules that attempt to join
when the join window is closed will report an AI value of 0x23. The join window can optionally be
persistently opened by setting NJ = 0xFF, but this causes the device to operate outside of the Zigbee
3.0 specifications.
See Join window for information on the join window and what circumstances can cause it to open.
When the Join Window is opened, the Association LED will blink rapidly to indicate that joining is
allowed. If operating in API mode (AP = 1 or 2), a 0x8A Modem Status frame will be generated when
the state of the join window changes:

n 0x43 - Join window is open
n 0x44 - Join window is closed

If you set NJ to 0, the join window will always shut and be closed; this is the recommended setting for
secure networks. When configured with this setting, using a CB2 AT command or pressing the
commissioning button twice opens the join window for one minute.
On end devices, NJ also enables or disables rejoining attempts. For an end device to enable rejoining,
set NJ less than 0xFF on the device that joins. If NJ < 0xFF, the device assumes the network is not
allowing joining and first tries to join a network using rejoining. If multiple rejoining attempts fail, or if
NJ = 0xFF, the device attempts to join using association.

Note When a device is rejoining a network, the join window does not need to be open. However, if the
rejoin attempt fails six times, the module attempts to join by association which requires an open
joining window.

Parameter range
0 - 0xFF (seconds)

Default
0xFE (254 seconds)

DJ (Disable Joining)
Prevent a local device from joining a network.
This does parameter does not affect end devices that are already joined to a network. It only prevents
those devices from joining another network.

Note This parameter is not written to flash with the WR command and reverts to default after a
power cycle.

Parameter range
0 - 1

AT commands Networking commands

Digi XBee® 3 Zigbee® RF Module 213

Parameter Description

0 Enable Joining

1 Disable Joining

Default
1

NR (Network Reset)
Resets network layer parameters on one or more modules within a PAN. Responds immediately with
anOK then causes a network restart. The device loses all network configuration and routing
information.
If NR = 0: Resets network layer parameters on the node issuing the command.
If NR = 1: Sends broadcast transmission to reset network layer parameters on all nodes in the PAN.

Note NR andNR0 both perform the same function andmay be used interchangeably.

Parameter range
0 - 1

Default
N/A

NW (Network Watchdog Timeout)
Set the network watchdog timeout used to ensure that a coordinator is active on the network (for
example, a keep alive message).
If NW is set > 0, the router monitors communication from the coordinator (or data collector) and
leaves the network if it cannot communicate with the coordinator for 3 NW periods. Alternatively, If
DC bit 5 is set, the router will not leave the network but will instead attempt to rejoin the coordinator.
The device resets the timer each time it receives or sends data to a coordinator, or if it receives a
many-to-one broadcast.

Parameter range
0 - 0x64FF [x 1 minute](up to approximately 18 days)

Default
0 (disabled)

JV (Coordinator Join Verification)
Used during join and rejoin attempts to determine if a coordinator is present on the target network.
This verification option is only applicable for a Distributed Trust Center (EO = 0) or unencrypted
network (EE = 0). On a Centralized Trust Center network (EO = 2), the coordinator is required to be
present for devices to associate so JVwill have no effect.
If JV = 1, a router or end device verifies the coordinator is on its operating channel when joining or
coming up from a power cycle. If a coordinator is not detected, the router or end device leaves its

AT commands Networking commands

Digi XBee® 3 Zigbee® RF Module 214

current channel and attempts to join a new PAN. If JV = 0, the router or end device continues
operating on its current channel even if a coordinator is not detected.

Parameter range
0 - 1

Parameter Description

0 No coordinator verification

1 Coordinator verification enabled

Default
0

JN (Join Notification)
Broadcast Join Notification upon successful join attempt.
If enabled, the device transmits a broadcast node identification packet on power up and when joining.
This action blinks the Associate LED rapidly on all devices that receive the transmission, and sends an
API frame out the serial port of API devices.
Digi recommends you disable this feature for large networks to prevent excessive broadcasts.

Parameter range
0 - 1

Parameter Description

0 Disabled

1 Broadcast notification to network upon joining

Default
0

DO (Miscellaneous Device Options)
A bitfield that contains advanced device options that do not have dedicated AT commands.
Leave unused bits clear so future device options are not inadvertently enabled during a firmware
update.

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Description

0 Reserved.

1 Reserved.

AT commands Networking commands

Digi XBee® 3 Zigbee® RF Module 215

Bit Description

2 Reserved.

3 Reserved.

4 Disable Tx packet extended timeout.

5 Disable ACK for end device I/O sampling.

6 Enable High-RAM concentrator. Set this bit to 0 for Low-RAM concentrator, where Route
Record Indicator - 0xA1 frames will be emitted for external storage and use in subsequent
Create Source Route - 0x21 frames. This option will only take effect when AR < 0xFF or when
acting as a Centralized Trust Center.

7 When the Network Watchdog triggers, search for a coordinator on a new network to join. The
Network Watchdog must be enabled for this to take effect—NW (Network Watchdog
Timeout) > 0.
With this bit set, the device will remain on the current network until a valid coordinator is
found. If the coordinator is found on a different network, the device will leave the current
network and join the new network. See Network Locator option.

Parameter range
0 - 0xFF

Default
0x40

DC (Joining Device Controls)
A bitfield that contains advanced joining device controls that do not have dedicated AT commands.
These options only apply to joining devices (CE=0).
Leave unused bits clear so future device controls are not inadvertently enabled during a firmware
update.

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Description

0 Generate a preconfigured link key using device's install code (KY is ignored). Enabling this
option requires the joining device be registered to the trust center.

1 Ignore NWK leave requests after joining.

2 Enable verbose join information.

3 Join network with best response (strongest signal) instead of first responder.

4 Reserved

5 An orphaned router will not leave the network but will attempt to rejoin the coordinator
indefinitely. This functionality also requires the network watchdog to be enabled (NW > 0).

AT commands Discovery commands

Digi XBee® 3 Zigbee® RF Module 216

Parameter range
0 - 0xFFFF

Default
0

C8 (Compatibility Options)
A bitfield that contains options for compatibility with legacy XBee Zigbee devices.
Devices prior to the XBee 3 use a different scale to represent LQI. C8 bit 4 (C8 | 0x10) enables an LQI
compatibility mode. Networks that contain a mix of XBee 3 Zigbee and legacy XBee devices should
enable this feature. Otherwise operating a mixed network without this bit set will prioritize legacy
devices when determining route cost.
If operating in Commandmode, changing C8 bit 4 is made active only when Commandmode exits via
timeout or CN (Exit Commandmode). Changing this bit causes all current parameters to be written to
persistent storage and the device restarts; this is equivalent to issuing WR and FR commands. When
the device restarts, no modem status is generated. CTS will also de-assert during this period, so flow
control is advised. If hardware flow control is not being used, a 1-second delay after exiting Command
mode (or applying changes if using API) may be necessary to avoid data loss.
Changing C8 after network association causes the device to leave the network.

Parameter range
0x00, 0x10

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Meaning

0 Reserved

1 Reserved

2 Reserved

3 Reserved

4 Legacy LQI Calculation Compatibility

Default
0x00

Discovery commands
Network Discovery and corresponding discovery options.

NI (Node Identifier)
The node identifier is a user-defined name or description of the device. Use this string with network
discovery commands in order to easily identify devices on the network.

AT commands Discovery commands

Digi XBee® 3 Zigbee® RF Module 217

Use the ND (Network Discovery) command with this string as an argument to filter network discovery
results.
Use the DN (Discover Node) command with this string as an argument to resolve the 64-bit address of
a node with a matching NI string.

Parameter range
A string of case-sensitive ASCII printable characters from 0 to 20 bytes in length. A carriage return
or a comma automatically ends the command.

Default
0x20 (an ASCII space character)

DD (Device Type Identifier)
Stores the Digi device type identifier value. Use this value to differentiate between multiple types of
devices (for example, sensors or lights).
This command can optionally be included in network discovery responses by setting bit 1 of NO.

Parameter range
0 - 0xFFFFFFFF

Default
0x120000

NT (Node Discover Timeout)
Sets the amount of time a base node waits for responses from other nodes when using the ND
(Network Discovery) and DN (Discover Node) commands. When a discovery is performed, the
broadcast transmission includes the NT value to provide all remote devices with a response timeout.
Remote devices wait a random time, less than NT, before sending their response to avoid collisions.

Parameter range
0x20 - 0xFF (x 100 ms)

Default
0x3C (6 seconds)

NO (Network Discovery Options)
Set the Advanced Options that affect how a particular device responds to network discoveries (ND
and DN commands) and when sending a node identification.

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Meaning

0 Append the DD (Digi Device Identifier) value to ND responses and node identification frames.

1 Local device sends its own ND response when ND is issued.

AT commands Discovery commands

Digi XBee® 3 Zigbee® RF Module 218

Parameter range
0 - 3

Default
0x0

ND (Network Discovery)
Discovers and reports all of the devices it finds on a network. The command reports the following
information after a jittered time delay (based on the local device’s NT value).

MY<CR> (2 bytes) (always 0xFFFE)
SH<CR> (4 bytes)
SL<CR> (4 bytes)
DB<CR> (Contains the detected signal strength of the response in negative dBm units)
NI <CR> (variable, 0-20 bytes plus 0x00 character)
PARENT_NETWORK ADDRESS<CR> (2 bytes)
DEVICE_TYPE<CR> (1 byte: 0 = Coordinator, 1 = Router, 2 = End Device)
STATUS<CR> (1 byte: reserved)
PROFILE_ID<CR> (2 bytes)
MANUFACTURER_ID<CR> (2 bytes)
DIGI DEVICE TYPE<CR> (4 bytes. Optionally included based on NO settings.)
RSSI OF LAST HOP<CR> (1 byte. Optionally included based on NO settings.)

After (NT * 100) milliseconds, the command ends by returning a <CR>.
If you sendND through a local API frame, each network node returns a separate Local or Remote AT
Command Response API packet, respectively. The data consists of the previously listed bytes without
the carriage return delimiters. The NI string ends in a “0x00” null character because it is a variable
length.
ND also accepts a NI (Node Identifier) as a parameter (optional). In this case, only a device that
matches the supplied identifier responds after a jittered time delay. If there are no matching devices,
the command returns an “ERROR”.
The radius of the ND command is set by the BH command.
A status code of 1=ERROR will be returned if the transmit queue is full. That means there are already
four messages queued for transmission. The application is trying to sendmessages faster than the
device can process the requests. The application may either try again later, be redesigned to send
messages at a slower rate, or wait for a Tx Status response for a prior message before attempting to
send another.
For more information about the options that affect the behavior of the ND command, see NO
(Network Discovery Options).
The ND command cannot be issued from within MicroPython or over BLE.

Parameter range
20-byte printable ASCII string (optional)

Default
N/A

AT commands Discovery commands

Digi XBee® 3 Zigbee® RF Module 219

DN (Discover Node)
Resolves an NI (Node identifier) string to a physical address (case sensitive).
The DN command cannot be issued from within MicroPython or over BLE.
The following events occur after DN discovers the destination node:
When DN is sent in Commandmode:

1. The device sets DL and DH to the address of the device with the matching NI string.
2. The receiving device returns OK (or ERROR).
3. The device exits Commandmode to allow for immediate communication. If an ERROR is

received, then Commandmode does not exit.

When DN is sent as a local Local AT Command Request - 0x08:

1. The receiving device returns the 16-bit network and 64-bit extended addresses in an API
Command Response frame..

2. If there is no response from a module within (NT * 100) milliseconds or you do not specify a
parameter (by leaving it blank), the receiving device returns an ERROR message.

Parameter range
Up to 20-byte printable ASCII string

Default
N/A

AS (Active Scan)
Forces an active scan of the neighborhood for beacon responses. The AS command cannot be issued
remotely.
An Active scan returns a multi-line response with each field separated by a carriage return:

AS_type – unsigned byte = Always returns 2, indicating the protocol is Zigbee
Channel – unsigned byte
PAN – unsigned word in big endian format
Extended PAN – eight unsigned bytes in bit endian format
Allow Join – unsigned byte – 1 indicates join is enabled, 0 that it is disabled
Stack Profile – unsigned byte
LQI – Link Quality Indicator - unsigned byte, higher values are better
RSSI – Relative Signal Strength Indicator - signed byte, lower values are better

Each field in the AS response is separated by a carriage return (0x0D character).
An additional carriage return separates multiple beacons.
Two additional carriage returns indicate the end of the Active Scan.
If using API Mode, no <CR>’s are returned and a separate response frame is generated for each
PanDescriptor. For more information, see Operate in API mode. If no PANs are discovered during the
scan, only one carriage return is printed.
The AS command cannot be issued from within MicroPython or over BLE.
Before a device is associated to a network (AI != 0), it will continuously perform an active scan in the
background, searching for a valid network to join. While this is occurring, you cannot manually perform

AT commands Operating Network commands

Digi XBee® 3 Zigbee® RF Module 220

an active scan using the AS command. You can bypass this restriction by setting DJ to 1. This will
disable joining and halt the background active scans.

Parameter range
N/A

Default
N/A

Operating Network commands
The following read-only AT commands provide information about the attached Zigbee network.

AI (Association Indication)
Read information regarding last node join request. Query AI during a join attempt to identify the
current state.
You can also enable Verbose Joining (DC=4) to debug a join attempt in real-time.

Status code Meaning

0x00 Successfully formed or joined a Zigbee network.

0x21 Scan found no PANs.

0x22 Scan found no valid PANs based on SC and ID settings.

0x23 Valid PAN found, but joining is currently disabled.

0x24 No joinable beacons were found.

0x27 Join attempt failed.

0x2A Failed to start coordinator.

0x2B Checking for existing coordinator.

0x40 Secure Join - Successfully attached to network, waiting for new link key.

0x41 Secure Join - Successfully received new link key from the trust center.

0x44 Secure Join - Failed to receive new link key from the trust center.

0xAB Attempted to join a device that did not respond.

0xAD Secure Join - a network security key was not received from the trust center.

0xAF Secure Join - a preconfigured key is required to join the network.

0xFF Initialization time; no association status has been determined yet.

Parameter range
0 - 0xFF [read-only]

Default
N/A

AT commands Zigbee Addressing commands

Digi XBee® 3 Zigbee® RF Module 221

OP (Operating Extended PAN ID)
Read the 64-bit extended PAN ID of the attached network. The OP value reflects the operating 64-bit
extended PAN ID where the device is running.

Parameter range
1 - 0xFFFFFFFFFFFFFFFF

Default
N/A

OI (Operating 16-bit PAN ID)
Read the 16-bit PAN ID of the attached network. The OI value reflects the actual 16-bit PAN ID where
the device is running.

Parameter range
0 - 0xFFFF [read-only}

Default
N/A

CH (Operating Channel)
Read the channel number of the attached network. Channels are represented as IEEE 802.15.4
channel numbers.
A value of 0 means the device has not joined a PAN and is not operating on any channel.

Parameter range
0, 0x0B - 0x1A (Channels 11 through 26) [read-only]

Default
N/A

NC (Number of Remaining Children)
Read the number of remaining end device children that can join the device. If NC returns 0, the device
is at capacity and cannot allow any more end device children to join.

Parameter range
0 - 0x14 (20 child devices)

Default
N/A

Zigbee Addressing commands
The following AT commands are used for communication with a Zigbee network after association.

AT commands Zigbee Addressing commands

Digi XBee® 3 Zigbee® RF Module 222

SH (Serial Number High)
Displays the upper 32 bits of the unique IEEE 64-bit extended address assigned to the XBee in the
factory.
This value is read-only and it never changes.

Parameter range
0x0013A200 - 0x0013A2FF [read-only]

Default
Set in the factory

SL (Serial Number Low)
Displays the lower 32 bits of the unique IEEE 64-bit RF extended address assigned to the XBee in the
factory.
This value is read-only and it never changes.

Parameter range
0 - 0xFFFFFFFF [read-only]

Default
Set in the factory

MY (16-bit Network Address)
Reads the 16-bit network address of the device, which is randomly assigned by the network manager
upon association.
A value of 0xFFFE means the device has not joined a Zigbee network.

Parameter range
0 - 0xFFFF [read-only]

Default
0 - 0xFFFE

MP (16-bit Parent Network Address)
Read the 16-bit network address of the end device's parent. A value of 0xFFFEmeans the device does
not have a parent or is not configured as an end device.

Parameter range
0 - 0xFFFE [read-only]

Default
0xFFFE

DH (Destination Address High)
Set or read the upper 32 bits of the 64-bit destination address.

AT commands Zigbee Addressing commands

Digi XBee® 3 Zigbee® RF Module 223

When you combine DH with DL, it defines the 64-bit destination address that the device uses for
outgoing data transmissions in transparent mode (AP = 0) and I/O sampling. This destination address
corresponds to the serial number (SH + SL) of the target device.
Reserved Zigbee network addresses:

n 0x000000000000FFFF is a broadcast address (DH = 0, DL = 0xFFFF).
n 0x0000000000000000 addresses the network coordinator.

Parameter range
0 - 0xFFFFFFFF

Default
0

DL (Destination Address Low)
Set or read the lower 32 bits of the 64-bit destination address.
When you combine DH with DL, it defines the 64-bit destination address the device uses for outgoing
data transmissions in Transparent mode (AP = 0) and I/O sampling. This destination address
corresponds to the serial number (SH + SL) of the target device.
Reserved Zigbee network addresses:

n 0x000000000000FFFF is a broadcast address (DH = 0, DL = 0xFFFF).
n 0x0000000000000000 addresses the network coordinator.

Parameter range
0 - 0xFFFFFFFF

Default
0

TO (Transmit Options)
A bitfield that configures the advanced options used for outgoing data transmissions from a device
operating in Transparent mode (AP = 0).
When operating in API mode, if the Transmit Options field in the API frame is 0, the TO parameter
value will be used instead.

Parameter range
0 - 0xFF

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Meaning

0 Disable MAC acknowledgments (retries) and route repair for unicast traffic.

AT commands Zigbee configuration commands

Digi XBee® 3 Zigbee® RF Module 224

Bit Meaning

4 Send data securely—requires secure session be established with destination. Enabling this
bit will reduce maximum payload size by 4 bytes.

5 Enable APS end-to-end encryption (if EE = 1). Enabling this bit will reduce the maximum
payload size by 9 bytes.

6 Use extended timeout.

Default
0

NP (Maximum Packet Payload Bytes)
If operating in Transparent mode (AP = 0), NP reads the maximum number of RF payload bytes that
you can typically send in a transmission based on current parameter settings (DH, DL, TO, and EE).
Transmissions in Transparent mode do not use fragmentation and this value represents the payload
of a single fragment. For other operating modes, NP returns the typical maximum number of RF
payload bytes that can be transmitted with fragmentation enabled (255 bytes).
See Maximum RF payload size for more information.
Some options may impact maximum payload size that are not captured by the NP value: sending a
packet securely across a Secure Session (API transmit option bit 4 enabled) will reduce the maximum
payload size by 4 bytes. Using source routing (AR < 0xFF) further reduces the maximum payload size
depending on how many hops are traversed.
Using source routing (AR < 0xFF), further reduces the maximum payload size depending on how many
hops are traversed.

Note NP returns a hexadecimal value. For example, if NP returns 0x54, this is equivalent to 84 bytes.

Parameter range
0 - 0xFF [read-only]

Default
N/A

Zigbee configuration commands
The following AT commands adjust the advanced communication settings that affect outgoing data
transmissions in a Zigbee network.

NH (Maximum Unicast Hops)
This parameter determines the timeout value used for unicast transmissions from the local device.
The timeout is computed as (50 * NH) + 100 ms. A unicast transmission that does not receive an
acknowledgement within the timeout period is reported as a failed transmission.
The default unicast timeout of 1.6 seconds (NH=0x1E) is enough time for data and the
acknowledgment to traverse approximately 8 hops.

AT commands Zigbee configuration commands

Digi XBee® 3 Zigbee® RF Module 225

If BH (Broadcast Hops) = 0, NH is used to set the maximum number of hops across the network when
sending a broadcast transmission. NH is also used to set the maximum number of hops for broadcast
if BH > NH.

Parameter range
0 - 0xFF

Default
0x1E

BH (Broadcast Hops)
The number of hops that broadcast transmissions from the local device traverse. Unlike NH, this
parameter is a fixed number of hops and not used in timeout calculations.

Parameter range
0 - 0x1E

Default
0

AR (Aggregate Routing Notification)
Set or read the periodic time for broadcasting aggregate route messages. Setting AR enables many-
to-one routing from the broadcasting device using the concentrator mode determined by DO Bit 6.
Set AR to 0x00 to send only one broadcast.
Set AR to 0xFF to stop sending broadcasts (many-to-one routing will still be enabled until a network
reset occurs).

Parameter range
0 - 0xFF (x10 sec)

Default
0xFF (disabled)

SE (Source Endpoint)
Sets or displays the application layer source endpoint value used for data transmissions.
This command only affects outgoing transmissions in Transparent mode (AP = 0).

Note Endpoints 0xDC - 0xEE are reserved for special use by Digi and should not be used in an
application outside of the listed purpose.

The reserved Digi endpoints are:

n 0xE8 - Digi data endpoint
n 0xE6 - Digi device object endpoint
n 0xE5 - Secure Session Server endpoint

AT commands Zigbee configuration commands

Digi XBee® 3 Zigbee® RF Module 226

n 0xE4 - Secure Session Client endpoint
n 0xE3 - Secure Session SRP authentication endpoint

Parameter range
0 - 0xFF

Default
0xE8

DE (Destination Endpoint)
Sets or displays the application layer destination endpoint used for data transmissions.
This command only affects outgoing transmissions in Transparent mode (AP = 0).

Note Endpoints 0xDC - 0xEE are reserved for special use and should not be used in an application
outside of the listed purpose.

The reserved Digi endpoints are:

n 0xE8 - Digi data endpoint
n 0xE6 - Digi device object endpoint
n 0xE5 - Secure Session Server endpoint
n 0xE4 - Secure Session Client endpoint
n 0xE3 - Secure Session SRP authentication endpoint

Parameter range
0 - 0xFF

Default
0xE8

CI (Cluster ID)
The application layer cluster ID value. The device uses this value as the cluster ID for all data
transmissions in Transparent mode and for all transmissions performed with the Transmit Request -
0x10 in API mode. In API mode, transmissions performed with the Explicit Addressing Command
Request - 0x11 ignore this parameter.

n 0x11 is a transparent data cluster ID.
n 0x12 is a loopback cluster ID. The destination node echoes any transmitted packet back to the

source device.

Parameter range
0 - 0xFFFF

Default
0x11 (Transparent data cluster ID)

AT commands Security commands

Digi XBee® 3 Zigbee® RF Module 227

Security commands
The following AT commands are used to set the initial security parameters.

Note Configure these parameters prior to forming/joining a network. Changing these parameters
may cause the node to leave any currently attached network.

EE (Encryption Enable)
Set or read the encryption enable setting of the local device.

Parameter range
0 - 1

Parameter Description

0 Encryption Disabled

1 Encryption Enabled

Default
0

EO (Encryption Options)
A bitfield that contains advanced encryption options that do not have dedicated AT commands. These
options are only applicable when encryption is enabled (EE = 1).
Leave unused bits clear so future encryption options are not inadvertently enabled during a firmware
update.

Bit field:
Unused bits must be set to 0.

Note When changing the EO option on a router or sleeping end device, you need to send an NR
(Network Reset) for the new options to take effect if the device is already joined to a network.

These bits may be logically OR'ed together:

Bit Description

0 Send/receive NWK keys in the clear (unsecure).

1 1 = Centralized Trust Center.
0 = Distributed Trust Center.

2 Use EUI64-hashed link keys (used on centralized trust center only).

3 Emit join notification frames (used on centralized trust center only).

4 Allow joining using well-known default link keys (unsecure).

AT commands Security commands

Digi XBee® 3 Zigbee® RF Module 228

Parameter range
0 - 0xFFFF

Default
2

KY (Link Key)
The preconfigured link key used during network formation and joining. When queried, KY returns zero
if the value of the key is zero; for all other values it returns anOK response to indicate that a key is
present.
On a forming node (CE = 1):

KY acts as the preconfigured global link key of the trust center. If you set KY to 0, a random
link key will be generated and used to form the network; this requires joining devices to be
registered to the trust center using a 0x24 registration API frame.

On a joining node (CE = 0):
KY is the preconfigured link key used during joining; it must either match the KY value set on
the trust center or be registered with the trust center via 0x24 registration frame. If you set
KY to 0 on a joining node, an unsecure well-known default link key will be used. EO bit 4 must
be set on the trust center for unsecure devices configured in this way to join.

Parameter range
0 - 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [write-only]

Default
0

NK (Trust Center Network Key)
The network key used by the trust center to encrypt network traffic. If you set NK to 0
(recommended), a random network key is used. NK is not used by joining nodes, as the network key is
securely obtained as part of the join process. When queried, NK returns zero if the value of the key is
zero; for all other values it returns anOK response to indicate that a key is present.
If operating with a centralized trust center (EE = 1, EO = 2), NK can be changed to rotate the network
key, which will be distributed to every device on the network. In a distributed trust center, every
router has a copy of the network key, so it cannot be changed after the network is formed.
When the network key is changed, a Modem Status - 0x8A of 0x45 will be emitted. After a period of
time, a 0x07 modem status will indicate that the network has switched to the new key.

Parameter range
0 - 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [write-only]

Default
0

RK (Trust Center Network Key Rotation Interval)
Used by a centralized trust center to automatically rotate the network key. RK determines in the
interval, in days, in which a new random network key is generated and distributed to the network.

AT commands Security commands

Digi XBee® 3 Zigbee® RF Module 229

Automatic network key rotation can only be performed if NK is set to 0 and the device is acting as a
centralized trust center (CE = 1, EE = 1, EO | 2). After RK days of runtime, the network key is rotated
and the network is updated with the new key.
Setting RK to 0 performs a one-time network key rotation. This can be used by an external means to
extend the key rotation beyond the maximum of 22 days or to securely rotate keys without explicitly
setting NK.
Devices on the network store the current and previous network keys to ensure devices remain on the
network through long sleep cycles or periods of lost connectivity. Should a device miss a network key
update, it will securely rejoin the network and obtain the new network key from the trust center.
When a network key rotation is initiated, a Modem Status - 0x8A of 0x45 is emitted. After a period of
time, a 0x07modem status will indicate that the network has switched to the new key.

Parameter range
0 - 0x16 (days)

Default
0x16

KT (Trust Center Link Key Registration Timeout)
When registering a joining device using a 0x24 registration API frame, this parameter determines the
length of time the key table entry persists before expiring.
This timeout is separate from the NJ join time. The join window opens when a device is successfully
registered to the trust center via the 0x24 Device Registration API Frame.

Parameter range
0x1E - 0xFFFF (seconds)

Default
0x12C (500 Seconds)

I? (Install Code)
The install code is a random key assigned to every Zigbee 3.0 device at the factory. This install code
can be used to securely register a device to a trust center using a 0x24 registration frame and option
bit.
For the install code to be used by the joining device, DC bit 0 must be set on the joiner.

Parameter range
0 - 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [read-only]

Default
Set in the factory.

DM (Disable Features)

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:
A bit field mask that you can use to enable or disable specific features.

AT commands Security commands

Digi XBee® 3 Zigbee® RF Module 230

If disabling device functionality for security purposes, we recommend that you also enable secure
remote configuration to prevent features from being re-enabled remotely.

Bit Description

0 Reserved

1 Reserved

2 Disable firmware over-the-air (FOTA) updates. When set to 1, the device cannot act as a FOTA
client. FOTA File System access is protected with FK (File System Public Key).

Note Serial firmware updates are always possible via the bootloader.

3 Disable SRP authentication on the client side of the connection.

4 Disable SRP authentication on the server side of the connection.

Parameter range
0, 4 - 0x1C (bit field)

Default
0

BK (Centralized Trust Center Backup and Restore)
BK is used to create a backup file in the file system named backup_TC.xbee. This command is also
used to restore a trust center using a backup file stored in the file system.

USAGE:

BK 0
Passing a parameter of zero creates a unique backup file using the device's SL and stores it in the
centralized trust center’s file system. To create a backup file, the module must be configured as
coordinator (CE = 1), as a centralized trust center (EO = 2), with security enabled (EE = 1), and have a
KB key set.

BK 1 <Backup Filename> <CX Output>

Note The backup filename is not an optional parameter.

Passing a parameter of 1 causes the device to look for a backup file in the file system and uses it to
set the device’s configuration to match the original coordinator.
Passing a parameter of 1 and <Backup Filename> causes the device to look for a backup file with the
given name in the file system and uses it to set the device’s configuration to match the original
coordinator.
After restoring the backup, if the new coordinator fails to communicate, the CX commandmay need
to be used to refresh needed network information in the new coordinator. The values returned by
executing the CX command on a router that is part of the existing network can be passed as optional
parameters to the new coordinator using the BK 1 <Backup Filename> command.

AT commands Security commands

Digi XBee® 3 Zigbee® RF Module 231

CX (Centralized Trust Center Network Information Update)
CX is a read-only, router specific command that returns three hexadecimal numbers that can be
entered as optional parameters to the BK command during the centralized trust center restore
operation. The CX command is only applicable for routers and will return ERROR if executed on a
coordinator.

Example
The CX command when executed on a router will produce similar output to:
ATCX
FE 7D48 2
These numbers can then be used as optional parameters when issuing a BK 1 <Backup Filename> to
a new device that is replacing an inoperable centralized trust center:
ATBK 1 "backup_TC417AD47A.xbee" FE 7D48 2
OK

KB (Centralized Trust Center Backup Key)
KB is used to set the 256-bit centralized trust center backup key for use with the BK command.
It is highly recommended to set KB prior to any network formation. See Centralized trust center
backup for best practices.
USAGE:

KB
When sent without any parameters, KB returns 0 if no key has been set, otherwise it returns OK.

KB <New Key>
When one parameter is passed, this value is set as the key. As soon as the key is set in this fashion, KY
andNK are cleared and an immediate WR is performed. This action is necessary to protect against the
possibility of an unauthorized user changing this key and generating a backup in an attempt to glean
sensitive information.

WARNING! This will invalidate the current network and require all devices reassociate
after the network is reformed.

KB <Old Key> <New Key>
When two parameters are passed, if the first value matches the value set for either KY or KB, then KB
is updated to the second value without clearing KY andNK. This causes no disruption to the existing
network.
To protect against the possibility that an unauthorized user could attempt a brute-force attack, 20
invalid attempts to change KB in this manner will result in KY, NK, and KB being cleared and an
immediate WR performed. These attempts persist across power cycles.

Parameter range
Up to a 256-bit value

AT commands Secure Session commands

Digi XBee® 3 Zigbee® RF Module 232

Default
0

Secure Session commands
These are the AT commands that enable Secure Session.

SA (Secure Access)
The Secure Access Options bit-field defines the feature set(s) intended to be secure against
unauthorized access. The XBee 3 Zigbee RF Module should establish a secure session in order to
access functionality defined by the feature set(s) on the local device.
A passwordmust be set using the Secure Session Salt and Verifier before access is secured.

Parameter range
0 - 0x1F (up to 0xFFFF)

Bit field
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Description

0 Reserved

1 Remote AT Commands
When set to 1 and if a password has been set, the device will not respond to insecure Remote
AT Command requests (API Frame 0x17) but still can send insecure Remote AT Commands.

2 Serial Data
When set to 1, the device will not emit any serial data that was sent insecurely.
This functionality applies to devices that are configured for Transparent mode, but in this
instance, only the SRP server would be AP = 0, the client would still have to send the Secure
Session Control - 0x2E via API mode. The server will also not emit any 0x90 or 0x91 frames
when this bit is set.

Default
0

*S (Secure Session Salt)
The Secure Remote Password (SRP) Salt is a 32-bit number used to create an encrypted password for
the XBee 3 Zigbee RF Module. The *S command contains the salt value in the salt/verifier pair used for
secure session authentication.

Parameter range
0-FFFFFFFF

Default
0

AT commands RF interfacing commands

Digi XBee® 3 Zigbee® RF Module 233

*V, *W, *X, *Y (Secure Session Verifier)
The secure session verifier is a 128-byte value used together with *S (Secure Session Salt) for secure
session authentication. The *V, *W, *X, and *Y commands each contain 32 bytes of the secure session
verifier: *V contains bytes 0 - 31, *W bytes 32 - 63, *X bytes 54 - 95, and *Y bytes 96 - 127.

Parameter range
Each command can be any 32-byte value: 0-FFFFFFFF

Default
0

RF interfacing commands
The following AT commands affect the 2.4 GHz Zigbee RF interface of the device.

PL (TX Power Level)
Sets or displays the power level at which the device transmits conducted power for Zigbee traffic.

Note If operating on channel 26 (CH = 0x1A), output power will be capped and cannot exceed 8 dBm
regardless of the PL setting.

Parameter range
0 - 4

Parameter
XBee non-
PRO XBee 3 PRO

0 -5 dBm -5 dBm

1 -1 dBm +3 dBm

2 +2 dBm +8 dBm

3 +5 dBm +15 dBm

4 +8 dBm +19 dBm

Default
4

PP (Output Power in dBm)
Display the operating output power based on the current configuration (channel and PL setting). The
values returned are in dBm, with negative values represented in two's complement; for example:
-5 dBm = 0xFB.

Parameter range
0 - 0xFF [read-only]

AT commands RF interfacing commands

Digi XBee® 3 Zigbee® RF Module 234

Default
N/A

SC (Scan Channels)
The channels used when an active scan is performed by the local device.
An active scan is performed any time a network is formed or prior to a join attempt. You can force an
active scan by issuing an AS command.
Changing SC after network association may cause the device to leave the network if the operating
channel (CH) is excluded from the SC mask.

Parameter range
0 - 0xFFFF (bit field)

Bit field mask:

Bit IEEE 802.15.4 Channel Frequency (GHz)

0 11 (0x0B) 2.405

1 12 (0x0C) 2.410

2 13 (0x0D) 2.415

3 14 (0x0E) 2.420

4 15 (0x0F) 2.425

5 16 (0x10) 2.430

6 17 (0x11) 2.435

7 18 (0x12) 2.440

8 19 (0x13) 2.445

9 20 (0x14) 2.450

10 21 (0x15) 2.455

11 22 (0x16) 2.460

12 23 (0x17) 2.465

13 24 (0x18) 2.470

14 25 (0x19) 2.475

15 26 (0x1A) 2.480

Note Avoid channel 26 if possible, as the output power is capped at +8 dBm on the Pro variant.

Default
0x7FFF (channels 11 through 25)

AT commands MAC diagnostics commands

Digi XBee® 3 Zigbee® RF Module 235

SD (Scan Duration)
Sets or displays the length of time the device will linger on a channel during an energy scan and active
scan.
Scan Time is measured as:

([# of channels to scan] * (2 ^SD) * 15.36 ms) + (38 ms * [# of channels to scan]) + 20 ms
Use the SC (Scan Channels) command to set the number of channels to scan.

Note SD influences the time the MAC listens for beacons or runs an energy scan on a given channel.
The SD time is not an accurate estimate of the router/end device joining time requirements. Zigbee
joining includes additional overhead comprising beacon processing on each channel, and sending a join
request that extends the actual joining time.

Parameter range
0 - 7 (exponent)

Default
3

MAC diagnostics commands
The following commands provide Media Access Control diagnostic information.

EA (MAC ACK Failure Count)
The number of unicast transmissions that time out awaiting a MAC ACK. This can be up to RR +1
timeouts per unicast when RR > 0.
This count increments whenever a MAC ACK timeout occurs on a MAC-level unicast. When the number
reaches 0xFFFF, the firmware does not count further events.
To reset the counter to any 16-bit unsigned value, append a hexadecimal parameter to the command.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

Default
0x0

DB (Last Packet RSSI)
This command reports the received signal strength of the last received RF data packet or APS
acknowledgment. The DB command only indicates the signal strength of the last hop. It does not
provide an accurate quality measurement for a multihop link.
The DB command value is measured in -dBm. For example, if DB returns 0x50, then the RSSI of the last
packet received was -80 dBm. Set DB to 0 to clear the current value.

Parameter range
0 - 0xFF

AT commands Sleep settings commands

Digi XBee® 3 Zigbee® RF Module 236

Default
N/A

ED (Energy Detect)
Measures the detected energy on each IEEE 802.15.4 channel.
In Transparent mode (AP = 0), a comma follows each value with the list ending with a carriage return.
The values returned reflect the detected energy level in units of -dBm. Convert an ED response of 49,
3A, and so on, to decimal to become -73 dBm, -58 dBm, and so on.
ED accepts a parameter value which will increase the duration of the energy detection scan.

Parameter range
0 - 0xFF

Default
N/A

Sleep settings commands
The following commands enable and configure the low power sleepmodes of the device.

SM (Sleep Mode)
Sets or displays the sleepmode of the device.
When SM > 0, the device operates as an end device. However, CEmust be 0 before SM can be set to a
value greater than 0 to change the device to an end device. Changing a device from a router to an end
device (or vice versa) forces the device to leave the network and attempt to join as the new device
type when changes are applied.

Parameter range
0, 1, 4, 5

Parameter Description

0 Sleep disabled (router)

1 Pin sleep

2 N/A

3 N/A

4 Cyclic sleep enabled

5 Cyclic sleep, pin wake

6 MicroPython sleep (with optional pin wake). For complete details see the Digi
MicroPython Programming Guide.

Default
0

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands Sleep settings commands

Digi XBee® 3 Zigbee® RF Module 237

SP (Cyclic Sleep Period)
Sets the duration of sleep time for the end device, up to 28 seconds. Use the SN command to extend
the sleep time past 28 seconds.
On the parent, this value determines how long the parent buffers a message for the sleeping end
device. Set the value to at least equal to the longest SP time of any child end device.

Parameter range
0x20 - 0xAF0 x 10 ms (Quarter second resolution)

Default
0x20

ST (Cyclic Sleep Wake Time)
Sets or displays the wake time of a cyclically sleeping end device after receiving serial or RF data.
The wake timer resets each time the device receives serial or RF data. Once the timer expires, an end
device may enter low power operation.

Parameter range
1 - 0xFFFF (x 1 ms)

Default
0x1388 (5 seconds)

SN (Number of Sleep Periods)
Set or read the number of sleep periods value. This command controls the number of sleep periods
that must elapse between assertions of the ON_SLEEP line during the wake time if no RF data is
waiting for the end device. This command allows a host application to sleep for an extended time if no
RF data is present.

Parameter range
1 - 0xFFFF

Default
1

SO (Sleep Options)
A bitfield that contains advanced sleep options that do not have dedicated AT commands.

Parameter range
0 - 0xFF

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

AT commands Sleep settings commands

Digi XBee® 3 Zigbee® RF Module 238

Bit Option

0 Reserved.

1 Wake for the entire ST time per wake period.

2 Enable extended cyclic sleep (sleep for the entire SN * SP time, possible data loss).

Default
0

WH (Wake Host Delay)
Sets or displays the wake host timer value. You can use WH to give a sleeping host processor
sufficient time to power up after the device asserts the ON_SLEEP line.
If you set WH to a non-zero value, this timer specifies a time in milliseconds that the device delays
after waking from sleep before sending data out the UART or transmitting an I/O sample. If the device
receives serial characters, the WH timer stops immediately.

Parameter range
0 - 0xFFFF (x 1 ms)

Default
0

PO (Polling Rate)
Set or read the end device poll rate.
Setting this to 0 (default) enables polling at 100 ms (default rate), advancing in 10 ms increments.
Adaptive polling may allow the end device to poll more rapidly for a short time when receiving RF data.

Parameter range
0 - 0x3E8 (x 10 ms)

Default
0

ET (End Device Timeout)
Sets the child table parent timeout. This command is only set on the sleepy end device. The sleepy end
device sends the timeout to the parent when joining the network.

Parameter range
0 - 14

Parameter Child table timeout

0 10 seconds

AT commands MicroPython commands

Digi XBee® 3 Zigbee® RF Module 239

Parameter Child table timeout

1 2 minutes

2 4 minutes

3 8 minutes

4 16 minutes

5 32 minutes

6 64 minutes

7 128 minutes

8 256 minutes

9 512 minutes

10 1024 minutes

11 2048 minutes

12 4096 minutes

13 8192 minutes

14 16384 minutes

Default
1 (2 minutes)

SI (Sleep Immediately)
Executable command. Causes a cyclic sleep device to sleep immediately rather than wait for the ST
timer to expire.

Note If you issue this command in Commandmode, the module remains in Commandmode until the
CT timer expires or you issue a CN command.

Instructs a synchronously sleeping network to go to sleep before before ST expires. It begins with the
node that receives the command and affects every node in the network that can hear the broadcast
that requests the network to sleep immediately.
It is only effective if the network is in sleep compatibility node—SM8 or SM7.

Parameter
N/A

Default
N/A

MicroPython commands
The following commands relate to using MicroPython on the XBee 3 Zigbee RF Module.

AT commands MicroPython commands

Digi XBee® 3 Zigbee® RF Module 240

PS (Python Startup)
Sets whether or not the XBee 3 Zigbee RF Module runs the stored Python code at startup.

Range
0 - 1

Parameter Description

0 Do not run stored Python code at startup.

1 Run stored Python code at startup.

Default
0

PY (MicroPython Command)
Interact with the XBee 3 Zigbee RF Module using MicroPython. PY is a command with sub-commands.
These sub-commands are arguments to PY.

PYB (Bundled Code Report)
You can store compiled code in flash using the os.bundle() function in the MicroPython REPL; refer to
the Digi MicroPython Programming Guide. The PYB sub-command reports details of the bundled code.
In Commandmode, it returns two lines of text, for example:

bytecode: 619 bytes (hash=0x0900DBCE)
compiled: 2017-05-09T15:49:44

The messages are:

n bytecode: the size of bytecode stored in flash and its 32-bit hash. A size of 0 indicates that
there is no stored code.

n compiled: a compilation timestamp. A timestamp of 2000-01-01T00:00:00 indicates that the
clock was not set during compilation.

In API mode, PYB returns three 32-bit big-endian values:

n bytecode size
n bytecode hash
n timestamp as seconds since 2000-01-01T00:00:00

PYE (Erase Bundled Code)
PYE interrupts any running code, erases any bundled code and then does a soft-reboot on the
MicroPython subsystem.

PYV (Version Report)
Report the MicroPython version.

PY^ (Interrupt Program)
Sends KeyboardInterrupt to MicroPython. This is useful if there is a runaway MicroPython program
and you have filled the stdin buffer. You can enter Commandmode (+++) and send ATPY^ to interrupt

https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands File System commands

Digi XBee® 3 Zigbee® RF Module 241

the program.

Default
N/A

File System commands
To access the file system, enter Commandmode and use the following commands. All commands
block the AT command processor until completed and only work from Commandmode; they are not
valid for API mode or MicroPython's xbee.atcmd() method. Commands are case-insensitive as are file
and directory names. Optional parameters are shown in square brackets ([]).

FS (File System)
FS is a command with sub-commands. These sub-commands are arguments to FS.

Error responses
If a command succeeds it returns information such as the name of the current working directory or a
list of files, or OK if there is no information to report. If it fails, you see a detailed error message
instead of the typical ERROR response for a failing AT command. The response is a named error code
and a textual description of the error.

Note The exact content of error messages may change in the future. All errors start with a upper case
E, followed by one or more uppercase letters and digits, a space, and an description of the error. If
writing your own AT command parsing code, you can determine if an FS command response is an error
by checking if the first letter of the response is upper case E.

FS (File System)
When sent without any parameters, FS prints a list of supported commands.

FS PWD
Prints the current working directory, which always starts with / and defaults to /flash at startup.

FS CD directory
Changes the current working directory to directory. Prints the current working directory or an error if
unable to change to directory.

FS MD directory
Creates the directory directory. Prints OK if successful or an error if unable to create the requested
directory.

FS LS [directory]
Lists files and directories in the specified directory. The directory parameter is optional and defaults
to a period (.), which represents the current directory. The list ends with a blank line.
Entries start with zero or more spaces, followed by file size or the string <DIR> for directories, then a
single space character and the name of the entry. Directory names end with a forward slash (/) to
differentiate them from files.

<DIR> ./
<DIR> ../

AT commands File System commands

Digi XBee® 3 Zigbee® RF Module 242

<DIR> lib/
32 test.txt

FS PUT filename
Starts a YMODEM receive on the XBee Smart Modem, storing the received file to filename and
ignoring the filename that appears in block 0 of the YMODEM transfer. The XBee Smart Modem sends
a prompt (Receiving file with YMODEM...) when it is ready to receive, at which point you should
initiate a YMODEM send in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

FS HASH filename
Print a SHA-256 hash of a file to allow for verification against a local copy of the file. On Windows, you
can generate a SHA-256 hash of a file with the command certutil -hashfile test.txt SHA256. On Mac
and Linux use shasum -b -a 256 test.txt.

FS GET filename
Starts a YMODEM send of filename on the XBee device. When it is ready to send, the XBee Smart
Modem sends a prompt: (Sending file with YMODEM...). When the prompt is sent, you should initiate
a YMODEM receive in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

FS RM file_or_directory
Removes the file or empty directory specified by file_or_directory. This command fails with an error if
file_or_directory does not exist, is not empty, refers to the current working directory or one of its
parents.

Note Removing a file only reclaims space if the file removed is placed last in the file system. Deleted
data that is contiguous with the last deleted file is also reclaimed. Directories are only reclaimed if all
directories in that particular block of memory are deleted and found at the end of the file system. Use
the ATFS INFO FULL command to see where in the file system files and directories are placed.

FS INFO
Report on the size of the filesystem, showing bytes in use, available, marked bad and total. The report
ends with a blank line, as with most multi-line AT command output. Example output:

204800 used
695296 free

0 bad
900096 total

FS INFO FULL
Reports every file and directory in the order they are placed in the file system along with the amount
of space they take up individually. Also reports deleted space as well as unused directory slots.
Example output:

128 /flash./
128 /flash/lib./
128 /flash/directory./
1664 [unused dir slot(s)]
2048 /flash/file1.txt.

AT commands Bluetooth Low Energy (BLE) commands

Digi XBee® 3 Zigbee® RF Module 243

2048 [deleted space]
2048 /flash/directory/file2.txt

FS FORMAT confirm
Formats the file system, leaving it with a default directory structure. Pass the word confirm as the
first parameter to confirm the format. The XBee Smart Modem responds with Formatting... when the
format starts, and will print OK followed by a carriage return when it finishes.

FK (File System Public Key)
Configures the device's File System Public Key.
The 65-byte public key is required to verify that the file system that is downloaded over-the-air is a
valid XBee 3 file system compatible with the Zigbee firmware.
For further information, refer to Set the public key on the XBee 3 device.

Parameter range
A valid 65-byte ECDSA public key—all 65-bytes must be entered, including any leading zeros.
Other accepted parameters:
0 = Clear the public key
1 = Returns the upper 48 bytes of the public key
2 = Returns the lower 17 bytes of the public key

Default
0

Note The Default value of 0 indicates that no public key has been set and hence, all file system
updates will be rejected.

Bluetooth Low Energy (BLE) commands
The following AT commands are BLE commands.

BT (Bluetooth Enable)
BT enables or disables the Bluetooth functionality.

Note When Bluetooth is enabled, the XBee 3 Zigbee RF Module cannot be in Sleepmode. If the device
is configured to allow Sleepmode and you enable Bluetooth, the XBee 3 Zigbee RF Module will not
enter sleep.

Parameter range

Parameter Description

0 Bluetooth functionality is disabled.

1 Bluetooth functionality is enabled.

AT commands Bluetooth Low Energy (BLE) commands

Digi XBee® 3 Zigbee® RF Module 244

Default
0

BL (Bluetooth Address)
BL reports the EUI-48 Bluetooth device address. Due to standard XBee AT Command processing,
leading zeroes are not included in the response when in Commandmode.

Parameter range
N/A

Default
N/A

BI (Bluetooth Identifier)
A human-friendly name for the device. This is the name that will appear in bluetooth advertisement
messages.
If set to default (ASCII space character), the bluetooth indicator will display as XBee3 Zigbee.
If using XBee Mobile, adjustments to the filter options will be needed if this value is populated.

Parameter range
A string of case-sensitive ASCII printable characters from 1 to 22 bytes in length.

Default
0x20 (an ASCII space character)

BP (Bluetooth Power)
Sets the power level for Bluetooth Advertisements. All other BLE transmissions are sent at 8 dBm.

Parameter range

Parameter Description

0 -20 dBm

1 -10 dBm

2 0 dBm

3 8 dBm

Default
3 = 8 dBm

$S (SRP Salt)

Note You should only use this command if you have already configured a password on the XBee device
and the salt corresponds to the password.

AT commands API configuration commmands

Digi XBee® 3 Zigbee® RF Module 245

The Secure Remote Password (SRP) Salt is a 32-bit number used to create an encrypted password for
the XBee 3 Zigbee RF Module. Use the $S command in conjunction with the $V, $W, $X, and $Y
verifiers. Together, the command and the verifiers authenticate the client for the BLE API Service
without storing the XBee password on the XBee 3 Zigbee RF Module.
Configure the salt in the $S command. In the $V, $W, $X, and $Y verifiers, you specify the 128-byte
verifier value, where each command represents 32 bytes of the total 128-byte verifier value.

Note The XBee 3 Zigbee RF Module does not allow for 0 to be valid salt. If the value is 0, SRP is
disabled and you are not able to authenticate using Bluetooth.

Parameter range
0 - FFFFFFFF

Default
0

$V, $W, $X, $Y commands (SRP Salt verifier)
Use the $V, $W, $X, and $Y verifiers in conjunction with $S (SRP Salt) to create an encrypted password
for the XBee 3 Zigbee RF Module. Together, $S and the verifiers authenticate the client for the BLE API
Service without storing the XBee password on the XBee device.
Configure the salt with the $S command. In the $V, $W, $X, and $Y verifiers, you specify the 128-byte
verifier value, where each command represents 32 bytes of the total 128-byte verifier value.

Parameter range
0 - FFFFFFFF

Default
0

API configuration commmands
The following commands affect how API mode operates.

AP (API Enable)
Determines the API mode for the UART interface.

Parameter range
0 - 2

Parameter Description

0 API disabled (operate in Transparent mode)

1 API enabled

2 API enabled (with escaped control characters)

4 API enabled (operate in Micropython mode)

AT commands API configuration commmands

Digi XBee® 3 Zigbee® RF Module 246

Default
0

AO (API Options)
Configure the serial output options for received API frames. This parameter is only applicable when
the device is operating in API mode (AP = 1 or 2) and will also affect the frames that are received
through MicroPython via the xbee.receive() function. For more information about ZDO packet
handling, see Receiving ZDO commands and responses.

n When AO is set to 0, a basic 0x90 receive frame type will be emitted when data packets are
received by the device. No ZDO messages are emitted when configured this way.

n When AO is non-zero, received data packets will be emitted as explicit 0x91 frames.
n AO bits 1, 2, and 3 determine the routing of received ZDO messages. By default, the XBee

application will handle all receivedmessages, but for supporting external Zigbee applications,
the receivedmessages can instead be passed through to the serial port by setting these bits.

n AO bit 4 will allow supported ZDO message that are handled by the XBee application to be
echoed to the serial port.

Leave unused bits clear so future API options are not inadvertently enabled during a firmware update.

Bit field
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Description

0 0 = Native API output (0x90 frame type)
1 = Explicit API output (0x91 frame type)

1 0 = XBee handles Supported ZDO requests
1 = Supported ZDO request pass-through

2 0 = XBee handles UnsupportedZDOrequests (responds with ZDO not supported)
1 = Unsupported ZDO request pass-through

3 0 = XBee handles Binding requests (responds with ZDO not supported)
1 = Binding request pass-through

4 This bit is only applicable when AO bit 1 = 0 (XBee handles incoming ZDO)
1 = Echo supported ZDO requests to the serial port

5 1 = Prevent any ZDO messages from going out the serial port. This will also disable any pass-
through set by other AO bits.

Parameter range
0 - 0xFF

Default
0

AZ (Extended API Options)
Optionally output additional ZCLmessages that would normally be masked by the XBee application.

AT commands UART interface commands

Digi XBee® 3 Zigbee® RF Module 247

Use this when debugging FOTA updates by enabling client-side messages to be sent out of the serial
port.

Parameter range
0x00 - 0x0A (bitfield)
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Description

0 Suppress ZCL output

1 Output receive frames for FOTA update commands

2 Output supported ZCL packets

3 Output Extended Modem Status (0x98) frames instead of Modem Status (0x8A) frames when
a Secure Session status change occurs

Default
0

UART interface commands
The following commands affect the UART serial interface.

BD (UART Baud Rate)
This command configures the serial interface baud rate for communication between the UART port of
the device and the host.
The device interprets any value between 0x12C and 0x0EC400 as a custom baud rate. Custom baud
rates are not guaranteed and the device attempts to find the closest achievable baud rate. After
setting a non-standard baud rate, query BD to find the actual operating baud rate before applying
changes.

Parameter range
Standard baud rates: 0x0 - 0x0A
Non-standard baud rates: 0x12C - 0x0EC400

Parameter Description

0x0 1200 b/s

0x1 2400 b/s

0x2 4800 b/s

0x3 9600 b/s

0x4 19200 b/s

0x5 38400 b/s

AT commands UART interface commands

Digi XBee® 3 Zigbee® RF Module 248

Parameter Description

0x6 57600 b/s

0x7 115200 b/s

0x8 230,400 b/s

0x9 460,800 b/s

0xA 921,600 b/s

Default
0x03 (9600 baud)

NB (Parity)
Set or read the serial parity settings for UART communications.
The device does not actually calculate and check the parity. It only interfaces with devices at the
configured parity and stop bit settings for serial error detection.

Parameter range
0 - 2

Parameter Description

0 No parity

1 Even parity

2 Odd parity

Default
0

SB (Stop Bits)
Sets or displays the number of stop bits for UART communications.

Parameter range
0 - 1

Parameter Description

0 One stop bit

1 Two stop bits

Default
0

AT commands AT Command options

Digi XBee® 3 Zigbee® RF Module 249

RO (Packetization Timeout)
Set or read the number of character times of inter-character silence required before transmission
begins when operating in Transparent mode. A “character time” is the amount of time it takes to
send a single ASCII character at the operating baud rate (BD).
Set RO to 0 to transmit characters as they arrive instead of buffering them into one RF packet.
The RO command only applies to Transparent mode, it does not apply to API mode.

Parameter range
0 - 0xFF (x character times)

Default
3

AT Command options
The following commands affect how Commandmode operates.

CC (Command Character)
Sets or displays the character value used to break from data mode to Commandmode. The command
character must be sent three times in succession while observing the minimum guard time (GT) of
silence before and after this sequence.
The default value (0x2B) is the ASCII code for the plus (+) character. You must enter it three times
within the guard time to enter Commandmode. To enter Commandmode, there is also a required
period of silence before and after the command sequence characters of the Commandmode
sequence (GT + CC + GT). The period of silence prevents inadvertently entering Commandmode. For
more information, see Enter Commandmode.

Parameter range
0 - 0xFF
Recommended: 0x20 - 0x7F (ASCII)

Default
0x2B (the ASCII plus character: +)

CT (Command Mode Timeout)
Sets or displays the Commandmode timeout parameter. If the local device enters Commandmode
and does not receive any valid AT commands within this time period, Commandmode silently exits.

Parameter range
2 - 0x28F

Default
0x64 (10 seconds)

GT (Guard Times)
Set the required period of silence before and after the command sequence characters of the
Commandmode sequence, GT + CC + GT. The period of silence prevents inadvertently entering

AT commands UART pin configuration commands

Digi XBee® 3 Zigbee® RF Module 250

Commandmode if a data stream in Transparent mode includes the CC character. For more
information, see Enter Commandmode.

Parameter range
0x2 - 0xCE4 (x 1 ms)

Default
0x3E8 (one second)

CN (Exit Command mode)
Executable command. CN immediately exits Commandmode and applies pending changes.

Parameter range
N/A

Default
N/A

UART pin configuration commands
The following commands are related to pin configuration for the UART interface.

D6 (DIO6/RTS)
Sets or displays the DIO6/RTS configuration (Micro pin 27/SMT pin 29/TH pin 16).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 RTS flow control

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D7 (DIO7/CTS)
Sets or displays the DIO7/CTS configuration (Micro pin 24/SMT pin 25/TH pin 12).

Parameter range
0, 1, 3 - 7

AT commands UART pin configuration commands

Digi XBee® 3 Zigbee® RF Module 251

Parameter Description

0 Disabled

1 CTS flow control

3 Digital input

4 Digital output, low

5 Digital output, high

6 RS-485 enable, low Tx

7 RS-485 enable, high Tx

Default
1

P3 (DIO13/DOUT Configuration)
Sets or displays the DIO13/DOUT configuration (Micro pin 3/SMT pin 3/TH pin 2).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 UART DOUT

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P4 (DIO14/DIN Configuration)
Sets or displays the DIO14/DIN configuration (Micro pin 4/SMT pin 4/TH pin 3).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

AT commands SMT/MMT SPI interface commands

Digi XBee® 3 Zigbee® RF Module 252

Parameter Description

1 UART DIN

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

SMT/MMT SPI interface commands
The following commands affect the SPI serial interface on SMT and MMT variants. These commands
are not applicable to the through-hole variant of the XBee 3; see D1 through D4 and P2 for through-
hole SPI support.

P5 (DIO15/SPI_MISO Configuration)
Sets or displays the DIO15 configuration (Micro pin 16/SMT pin 17/TH Pin N/A).

Note The DIO15 configuration is not available with the XBee 3 through-hole module.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_MISO

4 Digital output, low

5 Digital output, high

Default
1

P6 (DIO16/SPI_MOSI Configuration)
Sets or displays the DIO16 configuration (Micro pin 15/SMT pin 16/TH Pin N/A).

Note The DIO16 configuration is not available with the XBee 3 through-hole module.

Parameter range
0, 1, 4, 5

AT commands SMT/MMT SPI interface commands

Digi XBee® 3 Zigbee® RF Module 253

Parameter Description

0 Disabled

1 SPI_MOSI

4 Digital output, low

5 Digital output, high

Default
1

P7 (DIO17/SPI_SSEL Configuration)
Sets or displays the DIO17 configuration (Micro pin 14/SMT pin 15/TH Pin N/A).

Note The DIO17 configuration is not available with the XBee 3 through-hole module.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_SSEL

4 Digital output, low

5 Digital output, high

Default
1

P8 (DIO18/SPI_CLK Configuration)
Sets or displays the DIO18 configuration (Micro pin 13/SMT pin 14/TH Pin N/A).

Note The DIO18 configuration is not available with the XBee 3 through-hole module.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_CLK

4 Digital output, low

5 Digital output, high

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 254

Default
1

P9 (DIO19/SPI_ATTN Configuration)
Sets or displays the DIO19 configuration (Micro pin 11/SMT pin 12/TH Pin N/A).

Note The DIO19 configuration is not available with the XBee 3 through-hole module.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_ATTN

4 Digital output, low

5 Digital output, high

Default
1

I/O settings commands
The following commands configure the various I/O lines available on the XBee 3 Zigbee RF Module.

D0 (DIO0/AD0/Commissioning Button Configuration)
Sets or displays the DIO0/AD0/CB configuration (Micro pin 31/SMT pin 33/TH pin 20).

Parameter range
0 - 5

Parameter Description

0 Disabled

1 Commissioning Pushbutton

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 255

CB (Commissioning Pushbutton)
Use CB to simulate Commissioning Pushbutton presses in software.
You can issue CB even if the Commissioning Button functionality is disabled (D0 is not set to 1).
Set the parameter value to the number of button presses that you want to simulate. For example,
send CB1 to perform the action of pressing the Commissioning Pushbutton once.

Parameter range
1, 2, 4

Parameter Description

1 If disassociated:

n Join Network.

If associated:

n Wake device for 30 seconds, if sleeping.
n Send Node Identification broadcast.

2 Enable joining for 1 minute (or NJ seconds if NJ is not 0 or 0xFF).

4 Restore device configuration to default and leave the network.

Default
N/A

D1 (AD1/DIO1/TH_SPI_ATTN Configuration)
Sets or displays the DIO1/AD1 configuration (Micro pin 30/SMT pin 32/TH pin 19).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_ATTN for the through-hole device
N/A for the surface-mount device

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 256

D2 (DIO2/AD2/TH_SPI_CLK Configuration)
Sets or displays the DIO2/AD2 configuration (Micro pin 29/SMT pin 31/TH pin 18).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_CLK for through-hole devices
N/A for surface-mount devices

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D3 (DIO3/AD3/TH_SPI_SSEL Configuration)
Sets or displays the DIO3/AD3 configuration (Micro pin 28/SMT pin 30/TH pin 17).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_SSEL for the through-hole device
N/A for surface-mount device

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 257

D4 (DIO4/TH_SPI_MOSI Configuration)
Sets or displays the DIO4 configuration (Micro pin 23/SMT pin 24/TH pin 11).

Parameter range
SMT/MMT: 0, 3 - 5
TH: 0, 1, 3 - 5

Parameter Description

0 Disabled

1 SPI_MOSI for the through-hole device
N/A for the surface-mount device

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D5 (DIO5/Associate Configuration)
Sets or displays the DIO5 configuration (Micro pin 26/SMT pin 28/TH pin 15).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 Associate LED indicator - blinks when associated

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
1

D8 (DIO8/DTR/SLP_RQ)
Sets or displays the DIO8/DTR/SLP_RQ configuration (Micro pin 9/SMT pin 10/TH pin 9).

Note If D8 is configured as DTR/Sleep_Request (1), the line will be left floating while the device sleeps.
Leaving D8 set to 1 and the corresponding pin not connected to anything external to the device may
result in higher sleep current draw.

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 258

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 DTR/Sleep Request (used with pin sleep and cyclic sleep with pin wake)

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

D9 (DIO9/ON_SLEEP)
Sets or displays the DIO9/ON_SLEEP configuration (Micro pin 25/SMT pin 26/TH pin 13).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 Awake/SLEEP indicator

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P0 (DIO10/RSSI Configuration)
Sets or displays the DIO10/RSSI configuration (Micro pin 7/SMT pin 7/TH pin 6).

Parameter range
0 - 5

Parameter Description

0 Disabled

1 RSSI PWM output

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 259

Parameter Description

2 PWM0 output. M0 (PWM0 Duty Cycle) controls the value.

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P1 (DIO11 Configuration)
Sets or displays the DIO11 configuration (Micro pin 8/SMT pin 8/TH pin 7).

Parameter range
0, 2 - 5

Parameter Description

0 Disabled

1 N/A

2 PWM1 output. M1 (PWM1 Duty Cycle) controls the value.

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

P2 (DIO12/TH_SPI_MISO Configuration)
Sets or displays the DIO12 configuration (Micro pin 5/SMT pin 5/TH pin 4).

Parameter range
SMT/MMT: 0, 3 - 5
TH: 0, 1, 3 - 5

Parameter Description

0 Disabled

1 SPI_MISO for the through-hole device
N/A for the surface-mount andmicro device

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 260

Parameter Description

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

PR (Pull-up/Down Resistor Enable)
The bit field that configures the internal pull-up resistor status for the I/O lines.

n If you set a PR bit to 1, it enables the pull-up/down resistor
n If you set a PR bit to 0, it specifies no internal pull-up/down resistor.

PR and PD only affect lines that are configured as digital inputs (3) or disabled (0).
The following table defines the bit-field map for PR and PD commands.

Bit I/O line Micro pin Surface-mount pin Through-hole pin

0 DIO4 23 24 11

1 DIO3 28 30 17

2 DIO2 29 31 18

3 DIO1 30 32 19

4 DIO0 31 33 20

5 DIO6 27 29 16

6 DIO8 9 10 9

7 DIO14 4 4 3

8 DIO5 26 28 15

9 DIO9 25 26 13

10 DIO12 5 5 4

11 DIO10 7 7 6

12 DIO11 8 8 7

13 DIO7 24 25 12

14 DIO13 3 3 2

15 DIO15 16 17 N/A

16 DIO16 15 16 N/A

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 261

Bit I/O line Micro pin Surface-mount pin Through-hole pin

17 DIO17 14 15 N/A

18 DIO18 13 14 N/A

19 DIO19 11 12 N/A

Parameter range
Through-hole: 0 - 0xFFFF
SMT/MMT: 0 - 0xFFFFF

Default
0xFFFF

PD (Pull Up/Down Direction)
The resistor pull direction bit field (1 = pull-up, 0 = pull-down) for corresponding I/O lines that are set
by the PR command.
If the bit is set, the device uses an internal pull-up resistor. If it is clear, the device uses an internal
pull-down resistor. See the PR command for the bit order.
See PR (Pull-up/Down Resistor Enable) for the bit mappings.

Parameter range
Through-hole: 0 - 0xFFFF
SMT/MMT: 0 - 0xFFFFF

Default
0xFFFF

M0 (PWM0 Duty Cycle)
The duty cycle of the PWM0 line (Micro pin 7/SMT pin 7/TH pin 6).
If P0 (DIO10/RSSI Configuration) is configured as PWM0 output, you can configure the duty cycle of
PWM0:

1. Enable PWM0 output (P0 = 2).
2. Change M0 to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 µs and there are 0x03FF (1023 decimal) steps within this period. WhenM0 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

AT commands I/O settings commands

Digi XBee® 3 Zigbee® RF Module 262

M1 (PWM1 Duty Cycle)
The duty cycle of the PWM1 line (Micro pin 8/SMT pin 8/TH pin 7).
If P1 (DIO11 Configuration) is configured as PWM1 output, you can configure the duty cycle of PWM1:

1. Enable PWM1 output (P1 = 2).
2. Change M1 to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 µs and there are 0x03FF (1023 decimal) steps within this period. WhenM1 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

RP (RSSI PWM Timer)
The PWM timer expiration in 0.1 seconds. RP sets the duration of pulse width modulation (PWM) signal
output on the RSSI pin. The signal duty cycle updates with each received packet and shuts off when
the timer expires.
When RP = 0xFF, the output is always on.

Parameter range
0 - 0xFF (x 100 ms), 0xFF

Default
0x28 (four seconds)

LT (Associate LED Blink Time)
Set or read the Associate LED blink time. If you use D5 (DIO5/Associate Configuration) to enable the
Associate LED functionality (DIO5/Associate pin), this value determines the on and off blink times for
the LED when the device has joined the network.
If LT = 0, the device uses the default blink rate: 500 ms for a sleep coordinator, 250 ms for all other
nodes.
If LT = 0, the device uses the default blink rate of 250 ms.
For all other LT values, the firmware measures LT in 10 ms increments.

Parameter range
0, 0xA - 0xFF (x 10 ms)

Default
0

AT commands I/O sampling commands

Digi XBee® 3 Zigbee® RF Module 263

I/O sampling commands
The following commands configure I/O sampling on an originating device. Any I/O sample generated
by this device is sent to the address specified by DH and DL. You must configure at least one I/O line as
an input or output for a sample to be generated.

IR (I/O Sample Rate)
Determines the I/O sample rate used to generate outgoing I/O sample data. When the IR value is
greater than 0, the device samples and transmits all enabled digital I/O and ADCs every IR
milliseconds. I/O Samples transmit to the address specified by DH +DL.
At least one I/O line must be configured as an input or explicit output for samples to be generated.

Parameter range
0, 0x32 - 0xFFFF (ms)

Default
0

IC (Digital Change Detection)
The bit field that configures which digital I/O pins should be monitored for digital change detection. If
the device detects a change on an enabled digital I/O pin, it immediately transmits a digital I/O
sample to the address specified by DH +DL.
Change Detect is edge-triggered andmust occur while the device is awake. If the level transition
occurs during a sleep period, the device will not see a change.

Bit field

Bit I/O line Micro pin Surface-mount pin Through-hole pin

0 DIO0 31 33 20

1 DIO1 30 32 19

2 DIO2 29 31 18

3 DIO3 28 30 17

4 DIO4 23 24 11

5 DIO5 26 28 15

6 DIO6 27 29 16

7 DIO7 24 25 12

8 DIO8 9 10 9

9 DIO9 25 26 13

10 DIO10 7 7 6

11 DIO11 8 8 7

AT commands I/O sampling commands

Digi XBee® 3 Zigbee® RF Module 264

Bit I/O line Micro pin Surface-mount pin Through-hole pin

12 DIO12 5 5 4

13 DIO13 3 3 2

14 DIO14 4 4 3

Parameter range
0 - 0x7FFF

Default
0

AV (Analog Voltage Reference)
The analog voltage reference used for A/D sampling.

Parameter range
0 - 2

Parameter Description

0 1.25 V reference

1 2.5 V reference

2 VDD reference

Default
0

IS (Force Sample)
Immediately forces an I/O sample to be generated. If you issue the command to the local device, the
sample data is sent out the local serial interface. If sent remotely, the sample data is returned as a
Description.
If the device receives ERROR as a response to an IS query, there are no valid I/O lines to sample.
The IS command cannot be issued from within MicroPython or over BLE.

Parameter range
N/A

Default
N/A

V+ (Supply Voltage Threshold)
Define the supply voltage threshold that appends the supply voltage to outgoing I/O sample frames.
If the measured supply voltage falls below or equal to this threshold, the supply voltage will be
appended to outgoing I/O sample frames and set bit 7 of the Analog Channel Mask.

AT commands Location commands

Digi XBee® 3 Zigbee® RF Module 265

Set V+ to 0 to not include the supply voltage.
Set V+ to 1 to always include the supply voltage.

Example
To include a measurement of the supply voltage when it falls below 2.7 V, set V+ to 2700 = 0xA8A.

Parameter range
0 - 0xFFFF (in mV)

Default
0

Location commands
The following commands are user-defined parameters used to store the physical location of the
deployed device.

LX (Location X—Latitude)
User-defined GPS latitude coordinates of the node that is displayed on Digi Remote Manager and
Network Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

LY (Location Y—Longitude)
User-defined GPS longitude coordinates of the node that is displayed on Digi Remote Manager and
Network Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

LZ (Location Z—Elevation)
User-defined GPS elevation of the node that is displayed on Digi Remote Manager and Network
Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

AT commands Diagnostic commands - firmware/hardware information

Digi XBee® 3 Zigbee® RF Module 266

Diagnostic commands - firmware/hardware information
The following read-only commands are diagnostics that provide more information about the device.

VR (Firmware Version)
Reads the firmware version on a device.

Parameter range
0x1000 - 0xFFFF [read-only]

Default
Set in the firmware

VL (Version Long)
Shows detailed version information including the application build date and time.

Parameter range
Multi-line string [read-only]

Default
N/A

VH (Bootloader Version)
Reads the bootloader version of the device.

Parameter range
N/A

Default
N/A

HV (Hardware Version)
Display the hardware version number of the device.

Parameter range
0 - 0xFFFF [read-only]
Pre-definedHV values for XBee 3 RF devices:

n 0x41 = XBee 3 Micro (MMT) and Surface Mount (SMT)
n 0x42 = XBee 3 Through Hole (TH)

Default
Set in the factory

AT commands Diagnostic commands - firmware/hardware information

Digi XBee® 3 Zigbee® RF Module 267

%C (Hardware/Software Compatibility)
Specifies what firmware is compatible with this device's hardware.%C is compared to the to the
"compatibility_number" field of the firmware configuration xml file. Firmware with a compatibility
number lower than the value returned by%C cannot be loaded onto the board. If an invalid firmware
is loaded, the device will not boot until a valid firmware is reloaded.

Parameter range
[read-only]

Default
N/A

R? (Power Variant)
Specifies whether the device is a PRO or Non-PRO variant.

n 0 = PRO (+19 dBm output power)
n 1 = Non-PRO (+8 dBm output power)

Parameter range
0, 1 [read-only]

Default
N/A

%V (Voltage Supply Monitoring)
Reads the voltage on the Vcc pin in mV.

Parameter range
0 - 0xFFFF (in mV) [read only]

Default
N/A

TP (Temperature)
The current module temperature in degrees Celsius. The temperature is represented in two’s
complement, as shown in the following example:
1 °C = 0x0001 and -1°C = 0xFFFF

Parameter range
0 - 0xFFFF (Celsius) [read-only]

Default
N/A

AT commands Memory access commands

Digi XBee® 3 Zigbee® RF Module 268

CK (Configuration Checksum)
Reads the cyclic redundancy check (CRC) of the current AT command configuration settings to
determine if the configuration has changed.
After a firmware update this commandmay return a different value.

Parameter range
0 - 0xFFFF [read-only]

Default
N/A

%P (Invoke Bootloader)
Forces the device to reset into the bootloader menu.
This command can only be issued locally.

Parameter range
N/A

Default
N/A

Memory access commands
This section details the executable commands that provide memory access to the device.

FR (Software Reset)
Resets the device. The device responds immediately with anOK and performs a reset 100 ms later.
If you issue FRwhile the device is in Commandmode, the reset effectively exits Commandmode.

Parameter range
N/A

Default
N/A

AC (Apply Changes)
This command applies changes to all command parameters configured in Commandmode and also
applies queued command parameter values set with 0x09 API queued command frames.
Any of the following also applies changes the same as issuing an AC command:

n Exiting Commandmode with a CN command.
n Exiting Commandmode via timeout.
n Receiving a 0x08 API command frame.
n Issuing a 0x08 Local AT Command API frame.
n Issuing a remote 0x17 AT Command API frame with option bit 1 set.

AT commands Custom Default commands

Digi XBee® 3 Zigbee® RF Module 269

Example: Altering the UART baud rate with the BD command does not change the operating baud
rate until after an AC command is received; at this point, the interface immediately changes baud
rates.

Parameter range
N/A

Default
N/A

WR (Write)
Immediately writes parameter values to non-volatile flash memory so they persist through a power
cycle. Operating network parameters are persistent and do not require a WR command for the device
to reattach to the network.

Note Once you issue a WR command, do not send any additional characters to the device until after
you receive the OK response. Use the WR command sparingly; the device’s flash supports a limited
number of write cycles.

Parameter range
N/A

Default
N/A

RE (Restore Defaults)
Restore all device parameters—except ZS, C8, and KB—to factory defaults but do not apply the
parameters.

Parameter range
N/A

Default
N/A

Custom Default commands
The following commands are used to assign custom defaults to the device. Send RE (Restore Defaults)
to restore custom defaults. You must send these commands as local AT commands, they cannot be
set using Remote AT Command Request - 0x17.

%F (Set Custom Default)
When%F is received, the XBee 3 Zigbee RF Module takes the next command received and applies it to
both the current configuration and the custom defaults, so that when defaults are restored with RE
(Restore Defaults) the custom value is used.

Parameter range
N/A

AT commands Custom Default commands

Digi XBee® 3 Zigbee® RF Module 270

Default
N/A

!C (Clear Custom Defaults)
Clears all custom defaults. This command does not change the current settings, but only changes the
defaults so that RE (Restore Defaults) restores settings to the factory values.

Parameter range
N/A

Default
N/A

R1 (Restore Factory Defaults)
Restores factory defaults, ignoring any custom defaults set using %F (Set Custom Default).

Parameter range
N/A

Default
N/A

API Operation

An alternative to Transparent Operation are Application Programming Interface (API) Operations. API
operation requires that the device communicate through a structured interface (that is, data is
communicated in frames in a defined order). The API specifies how the device sends and receives
commands, command responses, andmodule status messages using a serial port Data Frame.

API serial exchanges 272
API frame format 274
Send ZDO commands with the API 277
Send Zigbee cluster library (ZCL) commands with the API 280
Send Public Profile Commands with the API 285

Digi XBee® 3 Zigbee® RF Module 271

API Operation API serial exchanges

Digi XBee® 3 Zigbee® RF Module 272

API serial exchanges
You can use the Frame ID field to correlate between the outgoing frames and associated responses.

AT commands
The following image shows the API frame exchange that takes place at the serial interface when
sending an AT command request to read or set a device parameter. You can disable the response by
setting the frame ID to 0 in the request.

API Operation API serial exchanges

Digi XBee® 3 Zigbee® RF Module 273

Transmit and Receive RF data
The following image shows the API frames exchange that take place at the UART interface when
sending RF data to another device. The transmit status frame is always sent at the end of a data
transmission unless the frame ID is set to 0 in the TX request. If the packet cannot be delivered to the
destination, the transmit status frame indicates the cause of failure.
The received data frame type (0x90 or 0x91) is determined by the AO command.

Remote AT commands
The following image shows the API frame exchanges that take place at the serial interface when
sending a remote AT command. The device does not send out a remote command response frame
through the serial interface if the remote device does not receive the remote command.

Source routing
The following image shows the API frame exchanges that take place at the serial port when sending a
source routed transmission.

API Operation API frame format

Digi XBee® 3 Zigbee® RF Module 274

Device Registration
The following image shows the API frame exchanges that take place at the serial interface when
registering a joining device to a trust center.

API frame format
An API frame consists of the following:

n Start delimeter
n Length
n Frame data
n Checksum

API operation (AP parameter = 1)
This is the recommended API mode for most applications. The following table shows the data frame
structure when you enable this mode:

Frame fields Byte Description

Start delimiter 1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant Byte

Frame data 4 - number (n) API-specific structure

Checksum n + 1 1 byte

Any data received prior to the start delimiter is silently discarded. If the frame is not received correctly
or if the checksum fails, the XBee replies with a radio status frame indicating the nature of the failure.

API operation with escaped characters (AP parameter = 2)
Setting API to 2 allows escaped control characters in the API frame. Due to its increased complexity,
we only recommend this API mode in specific circumstances. API 2 may help improve reliability if the
serial interface to the device is unstable or malformed frames are frequently being generated.
When operating in API 2, if an unescaped 0x7E byte is observed, it is treated as the start of a new API
frame and all data received prior to this delimiter is silently discarded. For more information on using
this API mode, see the Escaped Characters and API Mode 2 in the Digi Knowledge base.

http://knowledge.digi.com/articles/Knowledge_Base_Article/Escaped-Characters-and-API-Mode-2

API Operation API frame format

Digi XBee® 3 Zigbee® RF Module 275

API escaped operating mode works similarly to API mode. The only difference is that when working in
API escapedmode, the software must escape any payload bytes that match API frame specific data,
such as the start-of-frame byte (0x7E). The following table shows the structure of an API frame with
escaped characters:

Frame fields Byte Description

Start
delimiter

1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant
Byte

Characters escaped if
needed

Frame data 4 - n API-specific structure

Checksum n + 1 1 byte

Start delimiter field
This field indicates the beginning of a frame. It is always 0x7E. This allows the device to easily detect a
new incoming frame.

Escaped characters in API frames
If operating in API mode with escaped characters (AP parameter = 2), when sending or receiving a
serial data frame, specific data values must be escaped (flagged) so they do not interfere with the
data frame sequencing. To escape an interfering data byte, insert 0x7D and follow it with the byte to
be escaped (XORed with 0x20).
The following data bytes need to be escaped:

n 0x7E: start delimiter
n 0x7D: escape character
n 0x11: XON
n 0x13: XOFF

To escape a character:

1. Insert 0x7D (escape character).
2. Append it with the byte you want to escape, XORed with 0x20.

In API mode with escaped characters, the length field does not include any escape characters in the
frame and the firmware calculates the checksum with non-escaped data.

Example: escape an API frame
To express the following API non-escaped frame in API operating mode with escaped characters:

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

You must escape the 0x13 byte:

1. Insert a 0x7D.
2. XOR byte 0x13 with 0x20: 13 ⊕ 20 = 33

API Operation API frame format

Digi XBee® 3 Zigbee® RF Module 276

The following figure shows the resulting frame. Note that the length and checksum are the same as
the non-escaped frame.

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 7D 33 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

The length field has a two-byte value that specifies the number of bytes in the frame data field. It does
not include the checksum field.

Length field
The length field is a two-byte value that specifies the number of bytes contained in the frame data
field. It does not include the checksum field.

Frame data
This field contains the information that a device receives or will transmit. The structure of frame data
depends on the purpose of the API frame:

Start delimiter Length

Frame data

ChecksumFrame type Data

1 2 3 4 5 6 7 8 9 ... n n+1

0x7E MSB LSB API frame type Data Single byte

n Frame type is the API frame type identifier. It determines the type of API frame and indicates
how the Data field organizes the information.

n Data contains the data itself. This information and its order depend on the what type of frame
that the Frame type field defines.

Multi-byte values are sent big-endian.

Calculate and verify checksums
To test data integrity, the device calculates and verifies a checksum on non-escaped data.
To calculate the checksum of an API frame:

1. Add all bytes of the packet, except the start delimiter 0x7E and the length (the second and
third bytes).

2. Keep only the lowest 8 bits from the result.
3. Subtract this quantity from 0xFF.

To verify the checksum of an API frame:

1. Add all bytes including the checksum; do not include the delimiter and length.
2. If the checksum is correct, the last two digits on the far right of the sum equal 0xFF.

Example
Consider the following sample data packet: 7E 00 08 08 01 4E 49 58 42 45 45 3B

API Operation Send ZDO commands with the API

Digi XBee® 3 Zigbee® RF Module 277

Byte(s) Description

7E Start delimiter

00 08 Length bytes

08 API identifier

01 API frame ID

4E 49 AT Command

58 42 45 45 Parameter value

3B Checksum

To calculate the check sum you add all bytes of the packet, excluding the frame delimiter 7E and the
length (the second and third bytes):
7E 00 08 08 01 4E 49 58 42 45 45 3B
Add these hex bytes:
0x08 + 0x01 + 0x4E + 0x49 + 0x58 + 0x42 + 0x45 + 0x45 = 0x01C4
Now take the result of 0x01C4 and keep only the lowest 8 bits which in this example is 0xC4 (the two
far right digits). Subtract 0xC4 from 0xFF and you get 0x3B (0xFF - 0xC4 = 0x3B). 0x3B is the checksum
for this data packet.
If an API data packet is composed with an incorrect checksum, the XBee 3 Zigbee RF Module will
consider the packet invalid and will ignore the data.
To verify the check sum of an API packet add all bytes including the checksum (do not include the
delimiter and length) and if correct, the last two far right digits of the sum will equal FF.
0x08 + 0x01 + 0x4E + 0x49 + 0x58 + 0x42 + 0x45 + 0x45 + 0x3B = 0x01FF

Send ZDO commands with the API
Zigbee specifications define Zigbee device objects (ZDOs) as part of the Zigbee device profile. These
objects provide functionality to manage andmap out the Zigbee network and to discover services on
Zigbee devices. ZDOs are typically required when developing a Zigbee product that interoperates in a
public profile such as home automation or smart energy, or when communicating with Zigbee devices
from other vendors. You can also use the ZDO to perform several management functions such as
frequency agility (energy detect and channel changes - Mgmt Network Update Request), discovering
routes (Mgmt Routing Request) and neighbors (Mgmt LQI Request), andmanaging device connectivity
(Mgmt Leave and Permit Join Request).
The following table shows some of the more prominent ZDOs with their respective cluster identifier.
Each ZDO command has a defined payload. See the Zigbee device profile section of the Zigbee
specification for details.

ZDO command Cluster ID

Network Address Request 0x0000

IEEE Address Request 0x0001

Node Descriptor Request 0x0002

API Operation Send ZDO commands with the API

Digi XBee® 3 Zigbee® RF Module 278

ZDO command Cluster ID

Simple Descriptor Request 0x0004

Active Endpoints Request 0x0005

Match Descriptor Request 0x0006

Mgmt LQI Request 0x0031

Mgmt Routing Request 0x0032

Mgmt Leave Request 0x0034

Mgmt Permit Joining Request 0x0036

Mgmt Network Update Request 0x0038

Use the Explicit Addressing Command Request - 0x11 to send Zigbee device objects commands to
devices in the network. Sending ZDO commands with the Explicit Transmit API frame requires some
formatting of the data payload field.
When sending a ZDO command with the API, all multiple byte values in the ZDO command (API
payload), for example, u16, u32, and 64-bit addresses, must be sent in little endian byte order for the
command to be executed correctly on a remote device.
For an API XBee to receive ZDO responses, set AO (API Options) to 1 to enable the explicit receive API
frame.
The following table shows how you can use the Explicit API frame to send an “Active Endpoints”
request to discover the active endpoints on a device with a 16-bit address of 0x1234.

Frame data fields Offset Description

Frame type 3 0x11

Frame ID 4 Identifies the data frame for the host to correlate with a
subsequent transmit status. If set to 0, the device does not send
a response out the serial port.

64-bit destination
address

5-12 MSB first, LSB last. The 64-bit address of the destination device
(big endian byte order). For unicast transmissions, set to the 64-
bit address of the destination device, or to 0x0000000000000000
to send a unicast to the coordinator. Set to
0x000000000000FFFF for broadcast.

16-bit destination
network address

13 MSB first, LSB last. The 16-bit address of the destination device
(big endian byte order). Set to 0xFFFE for broadcast, or if the 16-
bit address is unknown.14

Source endpoint 15 Set to 0x00 for ZDO transmissions (endpoint 0 is the ZDO
endpoint).

Destination endpoint 16 Set to 0x00 for ZDO transmissions (endpoint 0 is the ZDO
endpoint).

API Operation Send ZDO commands with the API

Digi XBee® 3 Zigbee® RF Module 279

Frame data fields Offset Description

Cluster ID 17 Set to the cluster ID that corresponds to the ZDO command
being sent.
0x0005 = Active Endpoints Request18

Profile ID 19-20 Set to 0x0000 for ZDO transmissions (Profile ID 0x0000 is the
Zigbee device profile that supports ZDOs).

Broadcast radius 21 Sets the maximum number of hops a broadcast transmission can
traverse. If set to 0, the device sets the transmission radius to
the network maximum hops value.

Transmission options 22 All bits must be set to 0.

Data payload 23 The required payload for a ZDO command. All multi-byte ZDO
parameter values (u16, u32, 64- bit address) must be sent in little
endian byte order.
The Active Endpoints Request includes the following payload:
[16-bit NwkAddrOfInterest]

Note The 16-bit address in the API example (0x1234) is sent in
little endian byte order (0x3412).

24

25

Example
The following example shows how you can use the Explicit API frame to send an “Active Endpoints”
request to discover the active endpoints on a device with a 16-bit address of 0x1234.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x17

Frame type 3 0x11

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x00

7 0x00

8 0x00

9 0x00

10 0x00

11 0xFF

LSB12 0xFF

API Operation Send Zigbee cluster library (ZCL) commands with the API

Digi XBee® 3 Zigbee® RF Module 280

Frame data fields Offset Example

16-bit Destination
Network Address

MSB 13 0xFF

LSB 14 0xFE

Source endpoint 15 0x00

Destination endpoint 16 0x00

Cluster ID 17 0x00

18 0x05

Profile ID 19 0x00

20 0x00

Broadcast radius 21 0x00

Transmit options 22 0x00

Data payload - transaction sequence number 23 0x01

Data payload - ZDO payload 24 0x34

25 0x12

Checksum 29 0xA6

Send Zigbee cluster library (ZCL) commands with the API
The Zigbee cluster library defines a set of attributes and commands (clusters) that can be supported
in multiple Zigbee profiles. The ZCL commands are typically required when developing a Zigbee
product that will interoperate in a public profile such as home automation or smart energy, or when
communicating with Zigbee devices from other vendors. Applications that are not designed for a
public profile or for interoperability applications can skip this section.
The following table shows some prominent clusters with their respective attributes and commands.

Cluster (Cluster ID) Attributes (Attribute ID) Cluster ID

Basic (0x0000) Application Version (0x0001)
Hardware Version (0x0003)
Model Identifier (0x0005)

Reset to defaults (0x00)

Identify (0x0003) Identify Time (0x0000) Identify (0x00)
Identify Query (0x01)

Time (0x000A) Time (0x0000)
Time Status (0x0001)
Time Zone (0x0002)

Thermostat (0x0201) Local Temperature (0x0000)
Occupancy (0x0002)

Setpoint raise / lower (0x00)

The ZCL defines a number of profile-wide commands that can be supported on any profile, also known
as general commands. These commands include the following.

API Operation Send Zigbee cluster library (ZCL) commands with the API

Digi XBee® 3 Zigbee® RF Module 281

Command (Command ID) Description

Read Attributes (0x00) Used to read one or more attributes on a remote device.

Read Attributes Response
(0x01)

Generated in response to a read attributes command.

Write Attributes (0x02) Used to change one or more attributes on a remote device.

Write Attributes Response
(0x04)

Sent in response to a write attributes command.

Configure Reporting
(0x06)

Used to configure a device to automatically report on the values of one
or more of its attributes.

Report Attributes (0x0A) Used to report attributes when report conditions have been satisfied.

Discover Attributes (0x0C) Used to discover the attribute identifiers on a remote device.

Discover Attributes
Response (0x0D)

Sent in response to a discover attributes command.

Use the Explicit Addressing Command Request - 0x11 to send ZCL commands to devices in the
network. Sending ZCL commands with the Explicit Transmit API frame requires some formatting of
the data payload field.
When sending a ZCL command with the API, all multiple byte values in the ZCL command (API Payload)
(for example, u16, u32, 64-bit addresses) must be sent in little endian byte order for the command to
be executed correctly on a remote device.

Note When sending ZCL commands, set the AO command to 1 to enable the explicit receive API frame.
This provides indication of the source 64- and 16-bit addresses, cluster ID, profile ID, and endpoint
information for each received packet. This information is required to properly decode received data.

The following table shows how the Explicit API frame can be used to read the hardware version
attribute from a device with a 64-bit address of 0x0013A200 40401234 (unknown 16-bit address). This
example uses arbitrary source and destination endpoints. The hardware version attribute (attribute
ID 0x0003) is part of the basic cluster (cluster ID 0x0000). The Read Attribute general command ID is
0x00.

Frame fields Offset Description

Frame type 3

Frame ID 4 Identifies the serial port data frame for the
host to correlate with a subsequent transmit
status. If set to 0, no transmit status frame will
be sent out the serial port.

API Operation Send Zigbee cluster library (ZCL) commands with the API

Digi XBee® 3 Zigbee® RF Module 282

Frame fields Offset Description

64-bit
destination
address

MSB 5 The 64-bit address of the destination device
(big endian byte order). For unicast
transmissions, set to the 64-bit address of the
destination device, or to 0x0000000000000000
to send a unicast to the coordinator. Set to
0x000000000000FFFF for broadcast.

6

7

8

9

10

11

LSB 12

16-bit
destination
network
address

MSB 13 The 16-bit address of the destination device
(big endian byte order). Set to 0xFFFE for
broadcast, or if the 16-bit address is unknown.LSB 14

Source
endpoint

15 Set to the source endpoint on the sending
device (0x41 arbitrarily selected).

Destination
endpoint

16 Set to the destination endpoint on the remote
device (0x42 arbitrarily selected).

Cluster ID MSB 17 Set to the cluster ID that corresponds to the
ZCL command being sent. 0x0000 = Basic
Cluster.LSB 18

Profile ID MSB 19 Set to the profile ID supported on the device
(0xD123 arbitrarily selected).

LSB 20

Broadcast
radius

21 Sets the maximum number of hops a broadcast
transmission can traverse. If set to 0, the
transmission radius will be set to the network
maximum hops value.

Transmit
options

22 All bits must be set to 0.

Data payload ZCL
frame
header

Frame
control

23 Bitfield that defines the command type and
other relevant information in the ZCL
command. For more information, see the ZCL
specification.

Transaction
sequence
number

24 A sequence number used to correlate a ZCL
command with a ZCL response. (The hardware
version response will include this byte as a
sequence number in the response.) The value
0x01 was arbitrarily selected.

API Operation Send Zigbee cluster library (ZCL) commands with the API

Digi XBee® 3 Zigbee® RF Module 283

Frame fields Offset Description

Command ID 25 Since the frame control “frame type” bits are
00, this byte specifies a general command.
Command ID 0x00 is a Read Attributes
command.

ZCL
payload

Attribute ID 26 The payload for a “Read Attributes” command
is a list of Attribute Identifiers that are being
read.

Note The 16-bit Attribute ID (0x0003) is sent in
little endian byte order (0x0300). All multi- byte
ZCL header and payload values must be sent in
little endian byte order.

27 0xFF minus the 8 bit sum of bytes from offset 3
to this byte.

Example
In this example, the Frame Control field (offset 23) is constructed as follows:

Name Bits Example Value Description

Frame Type 0-1 00 - Command acts across the entire profile.

Manufacturer Specific 2 0 - The manufacturer code field is omitted from the ZCL Frame
Header.

Direction 3 0 - The command is being sent from the client side to the server
side.

Disable Default
Response

4 0 - Default response not disabled.

Reserved 5-7 Set to 0.

For more information, see the Zigbee Cluster Library specification.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x19

Frame type 3 0x11

Frame ID 4 0x01

API Operation Send Zigbee cluster library (ZCL) commands with the API

Digi XBee® 3 Zigbee® RF Module 284

Frame data fields Offset Example

64-bit destination
address

MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x40

11 0x12

LSB12 0x34

16-bit destination
network address

MSB 13 0xFF

LSB 14 0xFE

Source endpoint 15 0x41

Destination endpoint 16 0x42

Cluster ID MSB 17 0x00

LSB 18 0x00

Profile ID MSB 19 0xD1

LSB 20 0x23

Broadcast radius 21 0x00

Transmit options 22 0x00

Data payload ZCL frame
header

Frame control 23 0x00

Transaction sequence
number

24 0x01

Command ID 25 0x00

ZCL payload Attribute ID 26 0x03

27 0x00

Checksum 28 0xFA

API Operation Send Public Profile Commands with the API

Digi XBee® 3 Zigbee® RF Module 285

Send Public Profile Commands with the API
You can use the XBee API using the Explicit Transmit API frame (0x11) to send commands in public
profiles such as Smart Energy and Home Automation. Sending public profile commands with the
Explicit Transmit API frame requires some formatting of the data payload field. Most of the public
profile commands fit into the Zigbee cluster library (ZCL) architecture as described in Send Zigbee
cluster library (ZCL) commands with the API.
The following table shows how you can use the Explicit API frame to send a demand response and load
control message (cluster ID 0x701) in the smart energy profile (profile ID 0x0109) in the revision 14
Smart Energy specification. The device sends a “Load Control Event”message (command ID 0x00) and
to a device with 64- bit address of 0x0013A200 40401234 with a 16-bit address of 0x5678. The event
starts a load control event for water heaters and smart appliances for a duration of 1 minute, starting
immediately.

Note When sending public profile commands, set the AO command to 1 to enable the explicit receive
API frame. This provides indication of the source 64- and 16-bit addresses, cluster ID, profile ID, and
endpoint information for each received packet. This information is required to properly decode
received data.

Frame specific data

Frame Fields Offset Description

Frame type 3

Frame ID 4 Identifies the serial port data frame for the
host to correlate with a subsequent transmit
status. If set to 0, no transmit status frame
will be sent out the serial port.

64-bit
destination
address

MSB 5 The 64-bit address of the destination device
(big endian byte order). For unicast
transmissions, set to the 64-bit address of the
destination device, or to
0x0000000000000000 to send a unicast to the
coordinator. Set to 0x000000000000FFFF for
broadcast.

6

7

8

9

10

11

LSB 12

16-bit
destination
network
address

MSB 13 The 16-bit address of the destination device
(big endian byte order). Set to 0xFFFE for
broadcast, or if the 16-bit address is unknown.LSB 14

Source
endpoint

15 Set to the source endpoint on the sending
device. (0x41 arbitrarily selected).

API Operation Send Public Profile Commands with the API

Digi XBee® 3 Zigbee® RF Module 286

Frame Fields Offset Description

Destination
endpoint

16 Set to the destination endpoint on the remote
device. (0x42 arbitrarily selected).

Cluster ID MSB 17 Set to the cluster ID that corresponds to the
ZCL command being sent. 0x0701 = Demand
response and load control cluster IDLSB 18

Profile ID MSB 19 Set to the profile ID supported on the device.
0x0109 = Smart Energy profile ID.

LSB 20

Broadcast
radius

21 Sets the maximum number of hops a
broadcast transmission can traverse. If set to
0, the transmission radius will be set to the
network maximum hops value.

Transmit
options

22 All bits must be set to 0.

Data payload ZCL
frame
header

Frame control 23 Bitfield that defines the command type and
other relevant information in the ZCL
command. For more information, see the ZCL
specification.

Transaction
sequence
number

24 A sequence number used to correlate a ZCL
command with a ZCL response. (The
hardware version response will include this
byte as a sequence number in the response.)
The value 0x01 was arbitrarily selected.

25 Since the frame control “frame type” bits are
01, this byte specifies a cluster-specific
command. Command ID 0x00 in the Demand
Response and Load Control cluster is a Load
Control Event command. For more
information, see the Smart Energy
specification.

ZCL
payload -
load
control
event
data

Issuer event
ID

26 The 4-byte unique identifier.

Note The 4-byte ID is sent in little endian byte
order (0x78563412).

The event ID in this example (0x12345678) is
arbitrarily selected.

27

28

29

API Operation Send Public Profile Commands with the API

Digi XBee® 3 Zigbee® RF Module 287

Frame Fields Offset Description

Device class 30 This bit encoded field represents the Device
Class associated with the Load Control Event.
A bit value of 0x0014 enables smart
appliances and water heaters.

Note The 2-byte bit field value is sent in little
endian byte order.

31

Utility
enrollment
group

32 Used to identify sub-groups of devices in the
device-class. 0x00 addresses all groups.

Start time 33

34

35

36

Duration in
minutes

37 This 2-byte value must be sent in little endian
byte order.

38

Criticality level 39 Indicates the criticality level of the event. In
this example, the level is “voluntary”.

Cooling
temperature

40 Requested offset to apply to the normal
cooling set point.
A value of 0xFF indicates the temperature
offset value is not used.

Heating
temperature
offset

41 Requested offset to apply to the normal
heating set point.
A value of 0xFF indicates the temperature
offset value is not used.

Cooling
temperature
set point

42 Requested cooling set point in 0.01 degrees
Celsius. A value of 0x8000 means the set point
field is not used in this event.

Note The 0x80000 is sent in little endian byte
order.43

API Operation Send Public Profile Commands with the API

Digi XBee® 3 Zigbee® RF Module 288

Frame Fields Offset Description

Heating
temperature
set point

44 Requested heating set point in 0.01 degrees
Celsius. A value of 0x8000 means the set point
field is not used in this event.

Note The 0x80000 is sent in little endian byte
order.

45

Average load
adjustment
percentage

46 Maximum energy usage limit. A value of 0x80
indicates the field is not used.

Duty cycle 47 Defines the maximum “On” duty cycle. A value
of 0xFF indicates the duty cycle is not used in
this event.

Duty cycle
event control

48 A bitmap describing event options.

Example
In this example, the Frame Control field (offset 23) is constructed as follows:

Name Bits Example Value Description

Frame Type 0-1 01 - Command is specific to a cluster

Manufacturer Specific 2 0 - The manufacturer code field is omitted from the ZCL Frame
Header.

Direction 3 1 - The command is being sent from the server side to the client
side.

Disable Default
Response

4 0 - Default response not disabled

Reserved 5-7 Set to 0.

For more information, see the Zigbee cluster library specification.

Frame fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x19

Frame type 3 0x11

Frame ID 4 0x01

API Operation Send Public Profile Commands with the API

Digi XBee® 3 Zigbee® RF Module 289

Frame fields Offset Example

64-bit destination
address

MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x40

11 0x12

LSB 12 0x34

16-bit destination
network address

MSB 13 0x56

LSB 14 0x78

Source endpoint 15 0x41

Destination endpoint 16 0x42

Cluster ID MSB 17 0x07

LSB 18 0x01

Profile ID MSB 19 0x01

LSB 20 0x09

Broadcast radius 21 0x00

Transmit options 22 0x00

API Operation Send Public Profile Commands with the API

Digi XBee® 3 Zigbee® RF Module 290

Frame fields Offset Example

Data payload ZCL frame header Frame control 23 0x09

Transaction sequence
number

24 0x01

25 0x00

ZCL payload - load
control event data

Issuer event ID 26 0x78

27 0x56

28 0x34

29 0x12

Device class 30 0x14

31 0x00

Utility enrollment group 32 0x00

Start time 33 0x00

34 0x00

35 0x00

36 0x00

Duration in Minutes 37 0x01

38 0x00

Criticality level 39 0x04

Cooling temperature 40 0xFF

Heating temperature
offset

41 0xFF

Cooling temperature set
point

42 0x00

43 0x80

Heating temperature
set point

44 0x00

45 0x80

Average load
adjustment percentage

46 0x80

Duty cycle 47 0xFF

Duty cycle event control 48 0x00

Checksum 49 0x5B

Frame descriptions

The following sections describe the API frames.

Local AT Command Request - 0x08 292
Queue Local AT Command Request - 0x09 294
Transmit Request - 0x10 296
Explicit Addressing Command Request - 0x11 300
Remote AT Command Request - 0x17 306
Create Source Route - 0x21 309
Register Joining Device - 0x24 310
BLE Unlock Request - 0x2C 313
User Data Relay Input - 0x2D 316
Secure Session Control - 0x2E 318
Description 322
Format 322
Examples 323
Modem Status - 0x8A 324
Modem status codes 325
Extended Transmit Status - 0x8B 328
Transmit Status - 0x89 330
Receive Packet - 0x90 334
Explicit Receive Indicator - 0x91 336
I/O Sample Indicator - 0x92 339
Node Identification Indicator - 0x95 342
Remote AT Command Response- 0x97 346
Extended Modem Status - 0x98 349
Route Record Indicator - 0xA1 359
Registration Status - 0xA4 361
Many-to-One Route Request Indicator - 0xA3 363
BLE Unlock Response - 0xAC 364
User Data Relay Output - 0xAD 364
Secure Session Response - 0xAE 365

Digi XBee® 3 Zigbee® RF Module 291

Frame descriptions Local AT Command Request - 0x08

Digi XBee® 3 Zigbee® RF Module 292

Local AT Command Request - 0x08
Response frame: Description

Description
This frame type is used to query or set command parameters on the local device. Any parameter that
is set with this frame type will apply the change immediately. If you wish to queue multiple parameter
changes and apply them later, use the Queue Local AT Command Request - 0x09 instead.
When querying parameter values, this frame behaves identically to Queue Local AT Command Request
- 0x09: You can query parameter values by sending this frame with a command but no parameter
value field—the two-byte AT command is immediately followed by the frame checksum. When an AT
command is queried, a Description frame is populated with the parameter value that is currently set
on the device. The Frame ID of the 0x88 response is the same one set by the command in the 0x08
request frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Local AT Command Request - 0x08

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to0, the device will not emit a response frame.

5 16-bit AT command The two ASCII characters that identify the AT Command.

7-n variable Parameter
value
(optional)

If present, indicates the requested parameter value to set
the given register.
If no characters are present, it queries the current
parameter value and returns the result in the response.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set the local command parameter
Set the NI string of the radio to "End Device".
The corresponding Description with a matching Frame ID will indicate whether the parameter change
succeeded.

7E 00 0E 08 A1 4E 49 45 6E 64 20 44 65 76 69 63 65 38

Frame descriptions Local AT Command Request - 0x08

Digi XBee® 3 Zigbee® RF Module 293

Frame type Frame ID AT command Parameter value

0x08 0xA1 0x4E49 0x456E6420446576696365

Request Matches response "NI" "End Device"

Query local command parameter
Query the temperature of the module—TP command.
The corresponding Description with a matching Frame ID will return the temperature value.

7E 00 04 08 17 54 50 3C

Frame type Frame ID AT command Parameter value

0x08 0x17 0x5450 (omitted)

Request Matches response "TP" Query the parameter

Frame descriptions Queue Local AT Command Request - 0x09

Digi XBee® 3 Zigbee® RF Module 294

Queue Local AT Command Request - 0x09
Response frame: Description

Description
This frame type is used to query or set queued command parameters on the local device. In contrast
to Local AT Command Request - 0x08, this frame queues new parameter values and does not apply
them until you either:

n Issue a Local AT Command using the 0x08 frame
n Issue an AC command—queued or otherwise

When querying parameter values, this frame behaves identically to Local AT Command Request - 0x08:
You can query parameter values by sending this frame with a command but no parameter value field—
the two-byte AT command is immediately followed by the frame checksum. When an AT command is
queried, a Description frame is populated with the parameter value that is currently set on the device.
The Frame ID of the 0x88 response is the same one set by the command in the 0x09 request frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Queue Local AT Command Request - 0x09

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to0, the device will not emit a response frame.

5 16-bit AT command The two ASCII characters that identify the AT Command.

7-n variable Parameter
value
(optional)

If present, indicates the requested parameter value to set
the given register at a later time.
If no characters are present, it queries the current
parameter value and returns the result in the response.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Queue setting local command parameter
Set the UART baud rate to 115200, but do not apply changes immediately.

Frame descriptions Queue Local AT Command Request - 0x09

Digi XBee® 3 Zigbee® RF Module 295

The device will continue to operate at the current baud rate until the change is applied with a
subsequent AC command.
The corresponding Description with a matching Frame ID will indicate whether the parameter change
succeeded.

7E 00 05 09 53 42 44 07 16

Frame type Frame ID AT command Parameter value

0x09 0x53 0x4244 0x07

Request Matches response "BD" 7 = 115200 baud

Query local command parameter
Query the temperature of the module (TP command).
The corresponding 0x88 - Local AT Command Response frame with a matching Frame ID will return
the temperature value.

7E 00 04 09 17 54 50 3B

Frame type Frame ID AT command Parameter value

0x09 0x17 0x5450 (omitted)

Request Matches response "TP" Query the parameter

https://confluence.digi.com/display/RUGCL/0x88+-+Local+AT+Command+Response

Frame descriptions Transmit Request - 0x10

Digi XBee® 3 Zigbee® RF Module 296

Transmit Request - 0x10
Response frame: Extended Transmit Status - 0x8B

Description
This frame type is used to send payload data as an RF packet to a specific destination. This frame type
is typically used for transmitting serial data to one or more remote devices.
The endpoints used for these data transmissions are defined by the SE and EP commands and the
cluster ID defined by the CI command—excluding 802.15.4. To define the application-layer addressing
fields on a per-packet basis, use the Explicit Addressing Command Request - 0x11 instead.
Query the NP command to read the maximum number of payload bytes that can be sent.
See Maximum RF payload size for additional information on payload size restrictions.

64-bit addressing

n For broadcast transmissions, set the 64-bit destination address to 0x000000000000FFFF
n For unicast transmissions, set the 64-bit address field to the address of the desired destination

node
n If transmitting to a 64-bit destination, set the 16-bit address field to 0xFFFE

16-bit addressing

n DigiMesh does not support 16-bit addressing. The 16-bit address field is considered reserved
and should be set to 0xFFFE

n For unicast transmissions, set the 16-bit address field to the address of the desired destination
node

n To use 16-bit addressing, set the 64-bit address field to0xFFFFFFFFFFFFFFFF

Zigbee-specific addressing information

n A Zigbee coordinator can be addressed in one of two ways:
l Set the 64-bit address to all 0x00s and the 16-bit address to0xFFFE
l Set the 64-bit address to the coordinator's 64-bit address and the 16-bit address to0x0000

n When using 64-bit addressing, populating the correct 16-bit address of the destination helps
improve performance when transmitting to multiple devices. If you do not know a 16-bit
address, set this field to0xFFFE(unknown). If the transmission is successful, the Extended
Transmit Status - 0x8B indicates the discovered 16-bit address.

n When using 16-bit addressing, the following addresses are reserved:
l 0xFFFC = Broadcast to all routers
l 0xFFFD = Broadcast to all non-sleepy devices
l 0xFFFF = Broadcast to all devices, including sleepy end devices

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame descriptions Transmit Request - 0x10

Digi XBee® 3 Zigbee® RF Module 297

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Transmit Request - 0x10

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response frame.
If set to 0, the device will not emit a response frame.

5 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device.
Broadcast address is 0x000000000000FFFF.
Zigbee coordinator address is 0x0000000000000000.
When using 16-bit addressing, set this field
to 0xFFFFFFFFFFFFFFFF.

13 16-bit 16-bit
destination
address

Set to the 16-bit network address of the destination device, if
known.
If transmitting to a 64-bit address, sending a broadcast, or
the 16-bit address is unknown, set this field to 0xFFFE.

15 8-bit Broadcast
radius

Sets the maximum number of hops a broadcast transmission
can traverse. This parameter is only used for broadcast
transmissions.
If set to 0—recommended—the value of NHspecifies the
broadcast radius.

16 8-bit Transmit
options

See the Transmit options bit field table below for available
options.
If set to 0, the value of TO specifies the transmit options.

17-n variable Payload data Data to be sent to the destination device. Up to NP bytes per
packet.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Transmit options bit field
The available transmit options vary depending on the protocol being used. Bitfield options can be
combined. Set all unused bits to 0.

Zigbee

Bit Meaning Description

0 Disable ACK [0x01] Disable retries and route repair

1 Reserved <set this bit to 0>

2 Indirect Transmission [0x04] Used for Binding transmissions.

3 Multicast [0x08] See Multicast transmissions for more information.

Frame descriptions Transmit Request - 0x10

Digi XBee® 3 Zigbee® RF Module 298

Bit Meaning Description

4 Secure Session Encryption [0x10] Encrypt payload for transmission across a Secure Session
Reduces maximum payload size by 4 bytes.

5 Enable APS encryption [0x20] APS encrypt the payload using the link key set by KY
Reduces maximum payload size by 4 bytes.

6 Use extended timeout [0x40] See Extended timeout for more information.

Examples
Each example is written without escapes (AP=1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
Sending a unicast transmission to a device with the 64-bit address of 0013A20012345678 with the
serial data "TxData". Transmit options are set to 0, which means the transmission will send using the
options set by the TO command.
The corresponding Transmit Status - 0x89 response with a matching Frame ID will indicate whether
the transmission succeeded.

7E 00 14 10 52 00 13 A2 00 12 34 56 78 FF FE 00 00 54 78 44 61 74 61 91

Frame
type Frame ID 64-bit dest

16-bit
dest

Bcast
radius Options RF data

0x10 0x52 0x0013A200
12345678

0xFFFE 0x00 0x00 0x547844617461

Request Matches
response

Destination Unknown N/A Will use
TO

"TxData"

64-bit broadcast
Sending a broadcast transmission of the serial data "Broadcast" to neighboring devices and
suppressing the corresponding response by setting Frame ID to 0.

7E 00 17 10 00 00 00 00 00 00 00 FF FF FF FE 01 00 42 72 6F 61 64 63 61 73 74 60

Frame
type Frame ID 64-bit dest

16-bit
dest

Bcast
radius

Tx
Options RF data

0x10 0x00 0x00000000
0000FFFF

0xFFFE 0x01 0x00 0x42726F616463617374

Request Suppress
response

Broadcast
address

Reserved Single hop
broadcast

Will use
TO

"Broadcast"

16-bit unicast
Sending a unicast transmission to a device with the 16-bit address of 1234 with the serial data
"TxData". Disable retries and acknowledgments to prioritize performance over reliability. The

Frame descriptions Transmit Request - 0x10

Digi XBee® 3 Zigbee® RF Module 299

corresponding Transmit Status - 0x89 response with a matching Frame ID can be used to verify that
the transmission was sent.

7E 00 14 10 8D FF FF FF FF FF FF FF FF 12 34 00 01 54 78 44 61 74 61 DD

Frame
type Frame ID 64-bit dest 16-bit dest

Bcast
radius

Tx
Options RF data

0x10 0x8D 0xFFFFFFFF
FFFFFFFF

0x1234 0x00 0x01 0x547844617461

Request Matches
response

Use 16-bit
addressing

Destination N/A Disable
retries

"TxData"

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 Zigbee® RF Module 300

Explicit Addressing Command Request - 0x11
Response frame: Extended Transmit Status - 0x8B

Description
This frame type is used to send payload data as an RF packet to a specific destination
using application-layer addressing fields. The behavior of this frame is similar to Transmit Request -
0x10, but with additional fields available for user-defined endpoints, cluster ID, and profile ID.
This frame type is typically used for OTA updates, serial data transmissions, ZDO command execution,
third-party Zigbee interfacing, and advanced Zigbee operations.
Query NP (Maximum Packet Payload Bytes) to read the maximum number of payload bytes that can
be sent.
See Maximum RF payload size for additional information on payload size restrictions.

64-bit addressing
n For broadcast transmissions, set the 64-bit destination address to 0x000000000000FFFF
n For unicast transmissions, set the 64-bit address field to the address of the desired destination

node
n If transmitting to a 64-bit destination, set the 16-bit address field to 0xFFFE

16-bit addressing
n DigiMesh does not support 16-bit addressing. The 16-bit address field is considered reserved

and should be set to 0xFFFE
n For unicast transmissions, set the 16-bit address field to the address of the desired destination

node
n To use 16-bit addressing, set the 64-bit address field to 0xFFFFFFFFFFFFFFFF

Zigbee-specific addressing information
n A Zigbee coordinator can be addressed in one of two ways:

l Set the 64-bit address to all 0x00s and the 16-bit address to 0xFFFE
l Set the 64-bit address to the coordinator's 64-bit address and the 16-bit address to 0x0000

n When using 64-bit addressing, populating the correct 16-bit address of the destination helps
improve performance when transmitting to multiple devices. If you do not know a 16-bit
address, set this field to 0xFFFE (unknown). If the transmission is successful, the Extended
Transmit Status - 0x8B indicates the discovered 16-bit address.

n When using 16-bit addressing, the following addresses are reserved:
l 0xFFFC = Broadcast to all routers
l 0xFFFD = Broadcast to all non-sleepy devices
l 0xFFFF = Broadcast to all devices, including sleepy end devices

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 Zigbee® RF Module 301

n To send a ZDO command (ZCL/ZDP):
l Enter the ZDO command in the command data field (payload).
l Each field in the ZDO command frame is represented in little endian format.
l For information on the command formatting, refer to the ZCL and ZDP specifications.

Reserved endpoints
For serial data transmissions, the 0xE8 endpoint should be used for both source and destination
endpoints.
The active Digi endpoints are:

n 0xE8 - Digi Data endpoint
n 0xE6 - Digi Device Object (DDO) endpoint
n 0xE5 - XBee3 - Secure Session Server endpoint
n 0xE4 - XBee3 - Secure Session Client endpoint
n 0xE3 - XBee3 - Secure Session SRP authentication endpoint

Reserved cluster IDs
For serial data transmissions, the 0x0011 cluster ID should be used.
The following cluster IDs can be used on the 0xE8 data endpoint:

n 0x0011- Transparent data cluster ID
n 0x0012 - Loopback cluster ID:The destination node echoes any transmitted packet back to the

source device. Cannot be used on XBee 802.15.4 firmware.

Reserved profile IDs
The Digi profile ID of 0xC105 should be used when sending serial data between XBee devices.
The following profile IDs are handled by the XBee natively, all others—such as Smart Energy and Home
Automation—can be passed through to a host:

n 0xC105 - Digi profile ID
n 0x0000 - Zigbee device profile ID (ZDP)

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 Zigbee® RF Module 302

Offset Size Frame Field Description

3 8-bit Frame type Explicit Addressing Command Request - 0x11

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to0, the device will not emit a response frame.

5 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device.
Broadcast address is 0x000000000000FFFF.
Zigbee coordinator address is 0x0000000000000000.
When using 16-bit addressing, set this field
to 0xFFFFFFFFFFFFFFFF.

13 16-bit 16-bit
destination
address

Set to the 16-bit network address of the destination device if
known.
If transmitting to a 64-bit address, sending a broadcast, or
the 16-bit address is unknown, set this field to 0xFFFE.

15 8-bit Source
Endpoint

Source endpoint for the transmission.
Serial data transmissions should use 0xE8.

16 8-bit Destination
Endpoint

Destination endpoint for the transmission.
Serial data transmissions should use 0xE8.

17 16-bit Cluster ID The Cluster ID that the host uses in the transmission.
Serial data transmissions should use 0x11.

19 16-bit Profile ID The Profile ID that the host uses in the transmission.
Serial data transmissions between XBee devices should use
0xC105.

21 8-bit Broadcast
radius

Sets the maximum number of hops a broadcast transmission
can traverse. This parameter is only used for broadcast
transmissions.
If set to 0 (recommended), the value of NH specifies the
broadcast radius.

22 8-bit Transmit
options

See the Transmit options bit field table below for available
options.
If set to 0, the value of TO specifies the transmit options.

23-n variable Command
data

Data to be sent to the destination device. Up to NP bytes per
packet.
For ZDO and ZCL commands, the command frame is inserted
here. The fields in this nested command frame are
represented in little-endian.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Transmit options bit field
The available transmit options vary depending on the protocol being used. Bitfield options can be
combined. Set all unused bits to 0.

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 Zigbee® RF Module 303

Zigbee

Bit Meaning Description

0 Disable ACK [0x01] Disable retries and route repair

1 Reserved <set this bit to 0>

2 Indirect Transmission [0x04] Used for Binding transmissions.

3 Multicast [0x08] See Multicast transmissions for more information.

4 Secure Session Encryption [0x10] Encrypt payload for transmission across a Secure Session
Reduces maximum payload size by 4 bytes.

5 Enable APS encryption [0x20] APS encrypt the payload using the link key set by KY
Reduces maximum payload size by 4 bytes.

6 Use extended timeout [0x40] See Extended timeout for more information.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
Sending a unicast transmission to an XBee device with the 64-bit address of 0013A20012345678 with
the serial data "TxData". Transmit options are set to 0, which means the transmission will send using
the options set by the TO command. This transmission is identical to a Transmit Request - 0x10 using
default settings.
The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID will indicate
whether the transmission succeeded.

7E 00 1A 11 87 00 13 A2 00 12 34 56 78 FF FE E8 E8 00 11 C1 05 00 00 54 78 44 61
74 61 B4

Fram
e
type

Frame
ID

64-bit
dest

16-bit
dest

Sourc
e EP

Des
t EP

Clust
er

Profil
e

Bcast
radiu
s

Tx
optio
ns

Command
data

0x11 0x87 0x0013A2
00
12345678

0xFFFE 0xE8 0xE
8

0x001
1

0xC10
5

0x00 0x00 0x547844617
461

Explic
it
reque
st

Matche
s
respon
se

Destinatio
n

Unkno
wn

Digi
data

Digi
data

Data Digi
profile

N/A Use TO "TxData"

Loopback Packet
Sending a loopback transmission to an device with the 64-bit address of 0013A20012345678 using
Cluster ID 0x0012. To better understand the raw performance, retries and acknowledgements are

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 Zigbee® RF Module 304

disabled.
The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID can be used
to verify that the transmission was sent.
The destination will not emit a receive frame, instead it will return the transmission back to the
sender. The source device will emit the receive frame—the frame type is determined by the value
of AO—if the packet looped back successfully.

7E 00 1A 11 F8 00 13 A2 00 12 34 56 78 FF FE E8 E8 00 12 C1 05 00 01 54 78 44 61
74 61 41

Fram
e
type

Frame
ID

64-bit
dest

16-bit
dest

Sourc
e EP

Des
t EP

Clust
er

Profil
e

Bcast
radiu
s

Tx
optio
ns

Command
data

0x11 0xF8 0x0013A2
00

12345678

0xFFFE 0xE8 0xE
8

0x001
2

0xC10
5

0x00 0x01 0x547844617
461

Explic
it
reque
st

Matche
s
respon
se

Destinatio
n

Unkno
wn

Digi
data

Digi
data

Data Digi
profile

N/A Disabl
e
retries

"TxData"

ZDO command - ZDP Management Leave Request
Request a Zigbee device with the 64-bit address of 0013A20012345678 leave the network via a ZDO
command. The ZDP request is sent as a broadcast with the destination defined in the ZDO command
frame. Each field in the ZDO frame is in little-endian, the rest of the Digi API frame is big-endian.
In order to output the response to the ZDO command request, the sender must be configured to emit
explicit receive frames by setting bit 0 of AO (API Options)—AO = 1. See Receiving ZDO command and
responses for more information.
The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID will indicate
whether the transmission succeeded. The destination will handle the request and return a response
to the sender, which will be emitted as a Explicit Receive Indicator - 0x91 if enabled.

7E 00 1E 11 01 00 00 00 00 00 00 FF FF FF FE 00 00 00 34 00 00 00 00A1 78 56 34
21 00 A2 13 00 00 45

Fram
e
type

Frame
ID

64-bit
dest

16-bit
dest

Sour
ce EP

Des
t
EP Cluster

Profil
e

Bcas
t
radi
us

Tx
optio
ns

Command
data

11 DE 000000
00

0000FF
FF

FFFE 00 00 0000 0000 00 00 A1
78563421
00A21300

00

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 Zigbee® RF Module 305

Fram
e
type

Frame
ID

64-bit
dest

16-bit
dest

Sour
ce EP

Des
t
EP Cluster

Profil
e

Bcas
t
radi
us

Tx
optio
ns

Command
data

0x11 0xDE 0x00000
000

0000FFF
F

0xFFF
E

0x00 0x0
0

0x0034 0x00
00

0x00 0x00 n 0xA1
n 0x0013

A200
12345
678

n 0x00

Explic
it

reque
st

Match
es

respon
se

ZDO
comman
ds should

be
broadcas

ted

Reserv
ed

ZDO ZD
O

Managem
ent

Leave
Request
Cluster

Zigbe
e

Devic
e

Profil
e

(ZDP)

Use
BH

Use
TO

n Sequen
ce num

n 64-bit
dest

n Options

Frame descriptions Remote AT Command Request - 0x17

Digi XBee® 3 Zigbee® RF Module 306

Remote AT Command Request - 0x17
Response frame: 0x97 - Remote AT Command Response

Description
This frame type is used to query or set AT command parameters on a remote device.
For parameter changes on the remote device to take effect, you must apply changes, either by setting
the Apply Changes options bit, or by sending an AC command to the remote.
When querying parameter values you can query parameter values by sending this framewith a
command but no parameter value field—the two-byte AT command is immediately followed by the
frame checksum. When an AT command is queried, a Remote AT Command Response- 0x97 frame is
populated with the parameter value that is currently set on the device. The Frame ID of the 0x97
response is the same one set by the command in the 0x17 request frame.
XBee 3 firmwares support secured remote configuration through a Secure Session. Refer to Secured
remote AT commands for information on how to secure your devices against unauthorized remote
configuration.

Note Remote AT Command Requests should only be issued as unicast transmissions to avoid
potential network disruption. Broadcasts are not acknowledged, so there is no guarantee all devices
will receive the request. Responses are returned immediately by all receiving devices, which can cause
congestion on a large network.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Remote AT Command Request - 0x17.

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to 0, the device will not emit a response frame.

5 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device.
When using 16-bit addressing, set this field
to 0xFFFFFFFFFFFFFFFF.

13 16-bit 16-bit
destination
address

Set to the 16-bit network address of the destination device if
known.
If transmitting to a 64-bit address or the 16-bit address is
unknown, set this field to 0xFFFE.

https://confluence.digi.com/display/RUGCL/0x97+-+Remote+AT+Command+Response

Frame descriptions Remote AT Command Request - 0x17

Digi XBee® 3 Zigbee® RF Module 307

Offset Size Frame Field Description

15 8-bit Remote
command
options

Bit field of options that apply to the remote AT command
request:

n Bit 0: Disable ACK [0x01]
n Bit 1: Apply changes on remote [0x02]

l If not set, changes will not applied until the device
receives an AC command or a subsequent
command change is received with this bit set

n Bit 2: Reserved (set to 0)
n Bit 3: Reserved (set to 0)
n Bit 4: Send the remote command securely [0x10]

l Requires a secure session be established with the
destination

Note Option values may be combined. Set all unused bits to 0.

16 16-bit AT command The two ASCII characters that identify the AT Command.

18-n variable Parameter
value
(optional)

If present, indicates the requested parameter value to set the
given register.
If no characters are present, it queries the current parameter
value and returns the result in the response.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes—AP = 1—and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set remote command parameter
Set the NI string of a device with the 64-bit address of 0013A20012345678 to "Remote" and apply the
change immediately.
The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will indicate
success.

7E 00 15 17 27 00 13 A2 00 12 34 56 78 FF FE 02 4E 49 52 65 6D 6F 74 65 F6

Frame
type Frame ID 64-bit dest

16-bit
dest

Command
options

AT
command Parameter value

0x17 0x27 0x0013A200
12345678

0xFFFE 0x02 0x4E49 0x52656D6F7465

Request Matches
response

Unknown Apply
Change

"NI" "Remote"

Frame descriptions Remote AT Command Request - 0x17

Digi XBee® 3 Zigbee® RF Module 308

Queue remote command parameter change
Change the PAN ID of a remote device so it can migrate to a new PAN, since this change would cause
network disruption, the change is queued so that it can be made active later with a subsequent AC
command or written to flash with a queuedWR command so the change will be active after a power
cycle.
The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will indicate
success.

7E 00 11 17 68 00 13 A2 00 12 34 56 78 FF FE 00 49 44 04 51 D8

Frame
type Frame ID 64-bit dest

16-bit
dest

Command
options

AT
command

Parameter
value

0x17 0x68 0x0013A200
12345678

0xFFFE 0x00 0x4944 0x0451

Request Matches
response

Unknown Queue Change "ID"

Query remote command parameter
Query the temperature of a remote device—TP command.
The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will return the
temperature value.

7E 00 0F 17 FA 00 13 A2 00 12 34 56 78 FF FE 00 54 50 84

Frame
type Frame ID 64-bit dest

16-bit
dest

Command
options

AT
command

Parameter
value

0x17 0xFA 0x0013A200
12345678

0xFFFE 0x00 0x5450 (omitted)

Request Matches
response

Unknown N/A "TP" Query the
parameter

Frame descriptions Create Source Route - 0x21

Digi XBee® 3 Zigbee® RF Module 309

Create Source Route - 0x21

Description
This frame type is used to create an entry in the source route table of a local device. A source route
specifies the complete route a packet traverses to get from source to destination. For best results,
use source routing with many-to-one routing. See Source routing for more information.
In most cases, this frametype is used in combination with routing information received from a
corresponding Route Record Indicator - 0xA1 frame. Route indicators are generated when a network
device sends data to a concentrator. The order in which addresses are entered into the 0x21 frame
are the same as provided by the 0xA1 frame—destination to source.
There is no response frame for this frame type. Take care when generating source routes as an
incorrectly formatted frame will be silently rejected or may cause unexpected results.

Note Both the 64-bit and 16-bit destination addresses are required when creating a source route.

Format
The following table provides the contents of the frame. For details on frame structure, seeAPI frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Create Source Route - 0x21

4 8-bit Frame ID
(reserved)

This frame type generates no response, so the Frame ID field
is not used.
Set this field to 0.

5 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device
(required).

13 16-bit 16-bit
destination
address

Set to the 16-bit network address of the destination device
(required).

15 8-bit Options
(reserved)

Source routing options are not available yet. This bit field is
reserved for future functionality.
Set this field to 0.

Frame descriptions Register Joining Device - 0x24

Digi XBee® 3 Zigbee® RF Module 310

Offset Size Frame Field Description

16 8-bit Number of
addresses

The number of addresses in the source route (excluding
source and destination).
A route can only traverse across a maximum of 30 hops. If this
number is 0 or exceeds the maximum hop count, the frame is
silently discarded and a route will not be created.

17-n 16-bit
variable

Address The 16-bit network address(es) of the devices along the
source route, excluding the source and destination.
The addresses should be entered in reverse order (from
destination to source) to match the order provided in Route
Record Indicator - 0xA1.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

4-hop route
A concentrator needs to send data to a device with a 64-bit address of 0013A20012345678 that is 4-
hops away. Due to the size of the network, route discoveries need to be be minimized. The
concentrator had previously received a Route Record Indicator - 0xA1 with the source route to this
device and had stored this information.
The route looks like this:

Source (concentrator) <> Router A <> Router B <> Router C <> Destination (remote)
In this example, the network addresses are simplified.

7E 00 14 21 00 00 13 A2 00 12 34 56 78 DD DD 00 03 CC CC BB BB AA AA F6

Frame
type

Frame
ID 64-bit dest

16-bit
dest Options

Num of
addresse
s

Address
1 Address 2

Address
3

0x21 0x00 0x0013A20
0
12345678

0xDDDD 0x00 0x03 0xCCCC 0xBBBB 0xAAAA

Route
request

Not
used

Destination
IEEE
address

Destinatio
n NWK
address

Not used Neighbor
of dest

Intermediat
e hop

Neighbor
of source

Register Joining Device - 0x24
Response frame: Registration Status - 0xA4

Frame descriptions Register Joining Device - 0x24

Digi XBee® 3 Zigbee® RF Module 311

Description
This frame type is used to securely register a joining device to a trust center. Registration is the
process by which a node is authorized to join the network using a pre-configured or installation code-
derived link key that is conveyed to the trust center out-of-band—using an interface that is not the
Zigbee network.
If registering a device with a centralized trust center—EO = 2—then the key entry will only persist for
KT seconds before expiring, or until the device joins the network whereby the key is cleared.
Registering devices in a distributed trust center—EO = 0—is persistent and the key entry will never
expire unless explicitly removed. To remove a key entry on a distributed trust center, a 0x24 frame
should be issued with a null key—key field is absent from the frame. In a centralized trust center you
cannot use this method to explicitly remove the key entries before the KT timeout.
The registration frame will accept all 0xFF's for the device address (EUI) as a wild card. You can only
register one entry at a time with the trust center in this manner. Only after the KT period expires can
you enter an additional wildcard entry. We do not recommend this method. A best practice is to
specifically set the EUI for every device individually.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Register Joining Device - 0x24

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to 0, the device will not emit a response frame.

5 64-bit 64-bit
registrant
address

Set to the 64-bit IEEE address of the joining device.
Set to 0xFFFFFFFFFFFFFFFF to act as a one-time use
wildcard.

13 16-bit Reserved Not used. Set to 0xFFFE.

Frame descriptions Register Joining Device - 0x24

Digi XBee® 3 Zigbee® RF Module 312

Offset Size Frame Field Description

15 8-bit Options Bit field of options that apply to device registration:

n Bit 0: Key type
l [0x00] = Pre-configured Link Key - Register device

using a pre-configured link key
o Key field is the link key—KY command—of the

joining device.
l [0x01] = Install Code - Register device using an

installation code-derived link key.
o Key field is the install code—I? command—of the

joining device.

Note Option values may be combined. Set all unused bits to 0.

16-n variable Key/Install
Code

When registering using a pre-configured link key, field accepts
up to 16-bytes.
When registering using an install code, enter the installation
code + CRC—I? command—of the joining device. Up to 18-
bytes, the CRC can be any endianness.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte—
between length and checksum.

Examples
Each example is written without escapes—AP = 1—and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Pre-configured link key registration
A device with the address of 0013A20012345678 needs to join a secured network using a pre-
configured link key of 12345. This link key is unknown to the trust center—KY does not match—thus it
must be conveyed out-of-band via a registration frame.
The corresponding Registration Status - 0xA4 response with a matching Frame ID will indicate
whether the registration succeeded.

7E 00 10 24 5D 00 13 A2 00 12 34 56 78 FF FE 00 01 23 45 4F

Frame type Frame ID
64-bit reg
address Reserved Options Key/Install Code

0x24 0x5D 0x0013A200
12345678

0xFFFE 0x00 0x012345

Registration Matches
response

N/A Key is a link
key

Pre-configured Link
Key (KY)

Frame descriptions BLE Unlock Request - 0x2C

Digi XBee® 3 Zigbee® RF Module 313

Installation code-derived link key registration
A device with the address of 0013A20012345678 needs to join a secured network using an install code
of 620D28BDAF2A569B54E7377E33C504A099F1. The install code read by the I? command includes
the 2-byte CRC, the install code can be read from a device and entered into the frame as-is.
The corresponding Registration Status - 0xA4 response with a matching Frame ID will indicate
whether the registration succeeded.

7E 00 1F 24 1C 00 13 A2 00 12 34 56 78 FF FE 01 62 0D 28 BD AF 2A 56 9B 54 E7 37
7E 33 C5 04 A0 99 F1 C4

Frame type Frame ID
64-bit reg
address Reserved Options Key/Install Code

0x24 0x1C 0x0013A200
12345678

0xFFFE 0x01 0x620D28BDAF2A569B
54E7377E33C504A0
99F1

Registration Matches
response

N/A Key is an
install code

Install code (I?)

Distributed trust center: link key de-registration
A previously registered device with the 64-bit address of 0013A20012345678 needs to have its
registration information removed from a trust center so that the device remains on the network, but
can no longer securely join. After de-registration, a remote NR0 command can be issued to remove
the device from the network. This example only applies to a distributed trust center network—EO =
0—a centralized trust center will automatically expire the entry after KT seconds.
The corresponding Registration Status - 0xA4 response with a matching Frame ID will indicate
whether the de-registration succeeded.

7E 00 0D 24 D5 00 13 A2 00 12 34 56 78 FF FE 00 40

Frame type Frame ID 64-bit reg address Reserved Options Key/Install Code

0x24 0xD5 0x0013A200
12345678

0xFFFE 0x00 (omitted)

Registration Matches response device to de-register N/A N/A Remove entry

BLE Unlock Request - 0x2C
Response frame: BLE Unlock Response - 0xAC

Description
This frame type is used to authenticate a connection on the Bluetooth interface and unlock the
processing of AT command frames across this interface. The frame format for the BLE Unlock Request
- 0x2C and BLE Unlock Response - 0xAC are identical.
The unlock process is an implementation of the SRP (Secure Remote Password) algorithm using the
RFC5054 1024-bit group and the SHA-256 hash algorithm . The SRP identifying user name, commonly
referred to as I, is fixed to the username apiservice.

https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://tools.ietf.org/html/rfc5054#appendix-A

Frame descriptions BLE Unlock Request - 0x2C

Digi XBee® 3 Zigbee® RF Module 314

Upon completion, each side will have derived a shared session key which is used to communicate in an
encrypted fashion with the peer. Additionally, a Modem Status - 0x8A with the status code 0x32
(Bluetooth Connected) is emitted. When an unlocked connection is terminated, a Modem Status
frame with the status code 0x33 (Bluetooth Disconnected) is emitted.
The following implementations are known to work with the BLE SRP implementation:

n github.com/cncfanatics/SRP

You need to modify the hashing algorithm to SAH256 and the values ofNandgto use the RFC5054
1024-bit group.

n github.com/cocagne/csrp
n github.com/cocagne/pysrp

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type BLE Unlock Request - 0x2C
BLE Unlock Response - 0xAC

4 8-bit Step Indicates the phase of authentication and interpretation of
payload data:

1. Client presents A value
2. Server presents B and salt

3. Client present M1 session key validation value
4. Server presents M2 session key validation value and two

12-byte nonces

See the phase tables below for more information.
Step values greater than 0x80 indicate error conditions:

0x80 = Unable to offer B—cryptographic error with
content, usually due to A mod N == 0
0x81 = Incorrect payload length
0x82 = Bad proof of key
0x83 = Resource allocation error
0x84 = Request contained a step not in the correct
sequence

5-n varies Payload Payload structure varies by Step value. Refer to the phase tables
below for the structure of this field.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte—
between length and checksum.

https://github.com/cncfanatics/SRP
https://github.com/cocagne/csrp
https://github.com/cocagne/pysrp

Frame descriptions BLE Unlock Request - 0x2C

Digi XBee® 3 Zigbee® RF Module 315

Phase tables
The following fields are inserted as the payload data depending on the phase of the authentication
process

Phase 1 (Client presents A)

Offset Size Frame Field Description

5 1024-bit
(128 bytes)

A One-time ephemeral client public key.
If the A value is zero, the server will terminate the connection.

Phase 2 (Server presentsBand salt)

Offset Size Frame Field Description

5 32-bit
(4 bytes)

Salt The SRP Salt value from the $S command.

9 1024-bit
(128 bytes)

B One-time ephemeral host public key.

Phase 3 (Client presentsM1)

Offset Size Frame Field Description

5 256-bit
(32 bytes)

M1 SHA256 hash algorithm digest.

Phase 4 (Server presents M2)

Offset Size
Frame
Field Description

5 256-bit
(32
bytes)

M2 SHA256 hash algorithm digest .

37 96-bit
(12
bytes)

Tx
nonce

Random nonce used as the constant prefix of the counter block for
encryption/decryption of data transmitted to the API service by the
client.

49 96-bit
(12
bytes)

Rx
nonce

Random nonce used as the constant prefix of the counter block for
encryption/decryption of data received by the client from the API
service.

Upon completion of M2 verification, the session key has been determined to be correct and the API
service is unlocked and will allow additional API frames to be used. Content from this point will be
encrypted using AES-256-CTR with the following parameters:

Frame descriptions User Data Relay Input - 0x2D

Digi XBee® 3 Zigbee® RF Module 316

n Key: The entire 32-byte session key.
n Counter: 128 bits total, prefixed with the appropriate nonce shared during authentication.

Initial remaining counter value is 1.
The counter for data sent into the XBee API Service is prefixed with the TX nonce value—see
the Phase 4 table, above—and the counter for data sent by the XBee to the client is prefixed
with the RX nonce value.

Examples

Example sequence to perform AT Command XBee API frames over BLE

1. Discover the XBee 3 Zigbee RF Module through scanning for advertisements.
2. Create a connection to the GATT Server.
3. Optional, but recommended: request a larger MTU for the GATT connection.
4. Turn on indications for the API Response characteristic.
5. Perform unlock procedure using BLE Unlock Request - 0x2C unlock frames.
6. Once unlocked, you may send Local AT Command Request - 0x08 frames and receive AT

Command Response frames received.
a. For each frame to send, form the API Frame, and encrypt through the stream cipher as

described in the unlock procedure.
b. Write the frame using one or more write operations.
c. When successful, the response arrives in one or more indications. If your stack does not do

it for you, remember to acknowledge each indication as it is received. Note that you are
expected to process these indications and the response data is not available if you
attempt to perform a read operation to the characteristic.

d. Decrypt the stream of content provided through the indications, using the stream cipher
as described in the unlock procedure.

User Data Relay Input - 0x2D
Response frame: Transmit Status - 0x89
Output frame: User Data Relay Output - 0xAD

Description
This frame type is used to relay user data between local interfaces: MicroPython (internal interface),
BLE, or the serial port. Data relayed to the serial port—while in API mode—will be output as a User
Data Relay Output - 0xAD frame.
For information and examples on how to relay user data using MicroPython, see Send and receive
User Data Relay frames in the MicroPython Programming Guide.
For information and examples on how to relay user data using BLE, see Communicate with a
Micropython application in the XBee Mobile SDK user guide.

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm

Frame descriptions User Data Relay Input - 0x2D

Digi XBee® 3 Zigbee® RF Module 317

Use cases
n You can use this frame to send data to an external processor through the XBee UART/SPI via

the BLE connection. Use a cellphone to send the frame with UART interface as a target. Data
contained within the frame is sent out the UART contained within an Output Frame. The
external processor then receives and acts on the frame.

n Use an external processor to output the frame over the UART with the BLE interface as a
target. This outputs the data contained in the frame as the Output Frame over the active BLE
connection via indication.

n An external processor outputs the Frame over the UART with the Micropython interface as a
target. Micropython operates over the data and publishes the data to mqtt topic.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type User Data Relay Input - 0x2D

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to 0, the device will not emit a response frame.

5 8-bit Destination
Interface

The intended interface for the payload data:
0 = Serial port—SPI, or UART when in API mode
1 = BLE
2 = MicroPython

6-n variable Data The user data to be relayed

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Error cases
Errors are reported in a Transmit Status - 0x89 frame that corresponds with the Frame ID of the Relay
Data frame:

Error
code Error Description

0x7C Invalid Interface The user specified a destination interface that does not exist or is
unsupported.

Frame descriptions Secure Session Control - 0x2E

Digi XBee® 3 Zigbee® RF Module 318

Error
code Error Description

0x7D Interface not
accepting frames

The destination interface is a valid interface, but is not in a state that
can accept data.
For example: UART not in API mode, BLE does not have a GATT client
connected, or buffer queues are full.

If the message was relayed successfully, no status will be generated.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Relay to MicroPython
A host device needs to pass the message "Relay Data" to a MicroPython application running on a local
XBee device via the serial port.
A corresponding Transmit Status - 0x89 response with a matching Frame ID will indicate if there was a
problem with relaying the data.
If successful, the XBee micropython application can call relay.receive() to retrieve the data.

7E 00 0D 2D 3D 02 52 65 6C 61 79 20 44 61 74 61 FC

Frame type Frame ID Destination interface Data

0x2D 0x3D 0x02 0x52656C61792044617461

Input Matches response MicroPython "Relay Data"

Secure Session Control - 0x2E
Response frame: 0xAE - Secure Session Response

Description
This frame type is used to control a secure session between a client and a server. If the remote node
has a password set and you set the frame to login, this will establish a secure session that will allow
securedmessages to be passed between the server and client.
This frame is also used for clients to log out of an existing secure session.
Secure Sessions are end-to-end connections. If a login attempt is addressed to a broadcast address,
the attempt will fail with an invalid value—status 0xA—error.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

https://confluence.digi.com/display/RUGCL/0xAE+-+Secure+Session+Response

Frame descriptions Secure Session Control - 0x2E

Digi XBee® 3 Zigbee® RF Module 319

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Secure Session Control - 0x2E

4 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device.
Set to a broadcast address (0x000000000000FFFF) to affect
all active incoming sessions.

12 8-bit Secure
Session
options

Bit field of options that alter the session behavior:

n Bit 0: Client-side control:
l [0x00] = Login - Log in to a server as a client.

o If this bit is clear, the local device will act as a
client and initiate SRP authentication with the
target server.

l [0x01] = Logout - Log out of an existing session as
a client.
o If this bit is set, the local device will attempt to

end an existing client-side session with the
target server.

o When set, all other options, the timeout field,
and password will be ignored.

n Bit 1: Server-side control:
l [0x02] = Terminate Session - If this bit is set, the

server will end active incoming session(s).
o The address field can be set to a specific node or

the broadcast address can be used to end all
incoming sessions.

o Use Extended Modem Status - 0x98 frames to
manage multiple incoming sessions.

n Bit 2: Timeout type:
l [0x00] = Fixed timeout - The session terminates

after the timeout period has elapsed.
l [0x04] = Inter-packet timeout - The timeout is

refreshed every time a secure transmission occurs
between client and server.

Note Option values may be combined. Set all unused bits to 0.

Frame descriptions Secure Session Control - 0x2E

Digi XBee® 3 Zigbee® RF Module 320

Offset Size Frame Field Description

13 16-bit Timeout Timeout value for the secure session in units of⅒ th second.
Accepts up to 0x4650 (30 minutes).
A session with a timeout of 0x0000 is considered a yielding
session. Yielding sessions will never time out, but if a server
receives a request to start a session when it has the
maximum incoming sessions, the oldest yielding session will
be ended by the server to make room for the new session.
Sessions with non-zero timeouts will never be ended in this
way.

15-n variable Password The password set on the remote node—up to 64 ASCII
characters. Will be ignored if this frame is a logout or server
termination frame.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte—
between length and checksum.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Secure Session Client - Login with fixed timeout
A change is needed to be made on a device that is secured against unauthorized configuration
changes. A gateway that is authorized to make the change logs into the remote node for 5 minutes as
a client using the following frame:
The corresponding Secure Session Response - 0xAE will indicate whether the login attempt
succeeded.

7E 00 14 2E 00 13 A2 00 12 34 56 78 00 0B B8 50 41 53 53 57 4F 52 44 D2

Frame type 64-bit dest Session options Timeout Password

0x2E 0x0013A200
12345678

0x00 0x02B8 0x50415353574F5244D2

Request Login
Fixed

5 minutes "PASSWORD"

Secure Session Client - Login for streaming data
A large stream of data needs to be sent to a gateway that is secured against receiving unauthorized
data. Because the data stream, and the gateway's ability to process the data is unknown, a Secure
Session using a 60 second inter-packet timeout is established. The sending device logs into the
gateway as a client using the following frame:
The corresponding Secure Session Response - 0xAE will indicate whether the login attempt
succeeded.

7E 00 13 2E 00 00 00 00 00 00 00 00 04 02 58 52 6F 73 33 62 75 64 D1

Frame descriptions Secure Session Control - 0x2E

Digi XBee® 3 Zigbee® RF Module 321

Frame type 64-bit dest Session options Timeout Password

0x2E 0x00000000
00000000

0x04 0x0258 0x526F7333627564

Request Zigbee coordinator Login
Inter-packet

 60 seconds "Ros3bud"

Frame descriptions Description

Digi XBee® 3 Zigbee® RF Module 322

Local AT Command Response - 0x88

Request frames:

n Local AT Command Request - 0x08
n Queue Local AT Command Request - 0x09

Description
This frame type is emitted in response to a local AT Command request. Some commands send back
multiple response frames; for example, ND (Network Discovery). Refer to individual AT command
descriptions for details on API response behavior.
This frame is only emitted if the Frame ID in the request is non-zero.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Local AT Command Response - 0x88

4 8-bit Frame ID Identifies the data frame for the host to correlate with a prior
request.

5 16-bit AT
command

The two ASCII characters that identify the AT Command.

7 8-bit Command
status

Status code for the host's request:
0 = OK
1 = ERROR
2 = Invalid command
3 = Invalid parameter

8-n variable Command
data
(optional)

If the host requested a command parameter change, this field
will be omitted.
If the host queried a command by omitting the parameter value
in the request, this field will return the value currently set on
the device.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Frame descriptions Examples

Digi XBee® 3 Zigbee® RF Module 323

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set local command parameter
Host set the NI string of the local device to "End Device" using a 0x08 request frame.
The corresponding Description with a matching Frame ID is emitted as a response:

7E 00 05 88 01 4E 49 00 DF

Frame type Frame ID AT command Command Status Command data

0x88 0xA1 0x4E49 0x00 (omitted)

Response Matches request "NI" Success Parameter changes return no
data

Query local command parameter
Host queries the temperature of the local device—TP command—using a 0x08 request frame.
The corresponding Description with a matching Frame ID is emitted with the temperature value as a
response:

7E 00 07 88 01 54 50 00 FF FE D5

Frame type Frame ID AT command Command Status Command data

0x88 0x17 0x5450 0x00 0xFFFE

Response Matches request "TP" Success -2 °C

Frame descriptions Modem Status - 0x8A

Digi XBee® 3 Zigbee® RF Module 324

Modem Status - 0x8A

Description
This frame type is emitted in response to specific conditions. The status field of this frame indicates
the device behavior.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Modem Status - 0x8A

Frame descriptions Modem status codes

Digi XBee® 3 Zigbee® RF Module 325

Offset Size
Frame
Field Description

4 8-bit Modem
status

Complete list of modem statuses:
0x00 = Hardware reset or power up
0x01 = Watchdog timer reset
0x02 = Joined network
0x03 = Left network
0x06 = Coordinator started
0x07 = Network security key was updated
0x0B = Network woke up
0x0C = Network went to sleep
0x0D = Voltage supply limit exceeded
0x0E = Remote Manager connected
0x0F = Remote Manager disconnected
0x11 = Modem configuration changed while join in progress
0x12 = Access fault
0x13 = Fatal error
0x3B = Secure session successfully established
0x3C = Secure session ended
0x3D = Secure session authentication failed
0x3E = Coordinator detected a PAN ID conflict but took no action
0x3F = Coordinator changed PAN ID due to a conflict
0x32 = BLE Connect
0x33 = BLE Disconnect
0x34 = Bandmask configuration failed
0x35 = Cellular component update started
0x36 = Cellular component update failed
0x37 = Cellular component update completed
0x38 = XBee firmware update started
0x39 = XBee firmware update failed
0x3A = XBee firmware update applying
0x40 = Router PAN ID was changed by coordinator due to a conflict
0x42 = Network Watchdog timeout expired
0x43 = Open Join Window
0x44 = Closed Join Window
0x45 = Network Key Rotation initiated
0x80 through 0xFF = Stack error
Refer to the tables below for a filtered list of status codes that are
appropriate for specific devices.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Modem status codes
Statuses for specific modem types are listed here.

XBee Zigbee
0x00 = Hardware reset or power up
0x01 = Watchdog timer reset
0x02 = Joined network (routers and end devices)
0x03 = Disassociated

Frame descriptions Modem status codes

Digi XBee® 3 Zigbee® RF Module 326

0x06 = Coordinator started
0x07 = Network security key was updated
0x0D = Voltage supply limit exceeded—see Over-voltage detection in the XBee 3 RF Module Hardware
Reference Manual.
0x11 = Modem configuration changed while join in progress
0x3B = XBee 3 - Secure session successfully established
0x3C = XBee 3 - Secure session ended
0x3D = XBee 3 - Secure session authentication failed
0x3E = XBee 3 - Coordinator detected a PAN ID conflict but because CR = 0, no action will be taken.
0x3F = Coordinator changed PAN ID due to a conflict
0x32 = XBee 3 - BLE Connect
0x33 = XBee 3 - BLE Disconnect
0x34 = XBee 3 - No Secure Session Connection
0x40 = Router PAN ID was changed by coordinator due to a conflict
0x42 = Network Watchdog timeout expired three times
0x80 - 0xFF = Stack error

XBee Cellular
0x00 = Hardware reset or power up
0x01 = Watchdog timer reset
0x02 = Registered with cellular network
0x03 = Unregistered with cellular network
0x0E = Remote Manager connected
0x0F = Remote Manager disconnected
0x32 = XBee 3 - BLE Connect
0x33 = XBee 3 - BLE Disconnect
0x34 = Bandmask configuration failed
0x35 = Cellular component update started
0x36 = Cellular component update failed
0x37 = Cellular component update completed
0x38 = XBee firmware update started
0x39 = XBee firmware update failed
0x3A = XBee firmware update applying

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Boot status
When a device powers up, it returns the following API frame:

7E 00 02 8A 00 75

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Frame descriptions Modem status codes

Digi XBee® 3 Zigbee® RF Module 327

Frame type Modem Status

0x8A 0x00

Status Hardware Reset

Frame descriptions Extended Transmit Status - 0x8B

Digi XBee® 3 Zigbee® RF Module 328

Extended Transmit Status - 0x8B
Request frames:

n Transmit Request - 0x10
n Explicit Addressing Command Request - 0x11

Description
This frame type is emitted when a network transmission request completes. The status field of this
frame indicates whether the request succeeded or failed and the reason. This frame type provides
additional networking details about the transmission.
This frame is only emitted if the Frame ID in the request is non-zero.
Zigbee transmissions to an unknown network address of 0xFFFEwill return the discovered 16-bit
network address in this response frame. This network address should be used in subsequent
transmissions to the specific destination.

Note Broadcast transmissions are not acknowledged and always return a status of 0x00, even if the
delivery failed.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Transmit Status - 0x8B

4 8-bit Frame ID Identifies the data frame for the host to correlate with a prior
request.

5 16-bit 16-bit
destination
address

The 16-bit network address where the packet was delivered (if
successful). If not successful, this address is 0xFFFD (destination
address unknown). 0xFFFE indicates 16-bit addressing was not
used.

7 8-bit Transmit
retry count

The number of application transmission retries that occur.

Frame descriptions Extended Transmit Status - 0x8B

Digi XBee® 3 Zigbee® RF Module 329

Offset Size Frame Field Description

8 8-bit Delivery
status

Complete list of delivery statuses:
0x00 = Success
0x01 = MAC ACK failure
0x02 = CCA/LBT failure
0x03 = Indirect message unrequested / no spectrum
available
0x15 = Invalid destination endpoint
0x21 = Network ACK failure
0x22 = Not joined to network
0x23 = Self-addressed
0x24 = Address not found
0x25 = Route not found
0x26 = Broadcast source failed to hear a neighbor relay
the message
0x2B = Invalid binding table index
0x2C = Resource error - lack of free buffers, timers, etc.
0x2D = Attempted broadcast with APS transmission
0x2E = Attempted unicast with APS transmission, but EE =
0
0x31 = Internal resource error
0x32 = Resource error lack of free buffers, timers, etc.
0x34 = No Secure Session connection
0x35 = Encryption failure
0x74 = Data payload too large
0x75 = Indirect message unrequested

Refer to the tables below for a filtered list of status codes that
are appropriate for specific devices.

9 8-bit Discovery
status

Complete list of delivery statuses:
0x00 = No discovery overhead
0x01 = Zigbee address discovery
0x02 = Route discovery
0x03 = Zigbee address and route discovery
0x40 = Zigbee end device extended timeout

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Delivery status codes
Protocol-specific status codes follow

XBee Zigbee
0x00 = Success
0x01 = MAC ACK Failure
0x02 = CCA Failure
0x15 = Invalid destination endpoint
0x21 = Network ACK Failure
0x22 = Not Joined to Network
0x23 = Self-addressed
0x24 = Address Not Found

Frame descriptions Transmit Status - 0x89

Digi XBee® 3 Zigbee® RF Module 330

0x25 = Route Not Found
0x26 = Broadcast source failed to hear a neighbor relay the message
0x2B = Invalid binding table index
0x2C = Resource error lack of free buffers, timers, etc.
0x2D = Attempted broadcast with APS transmission
0x2E = Attempted unicast with APS transmission, but EE = 0
0x32 = Resource error lack of free buffers, timers, etc.
0x34 = XBee 3 - No Secure Session Connection
0x35 = Encryption Failure
0x74 = Data payload too large
0x75 = Indirect message unrequested

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Successful transmission
Host sent a unicast transmission to a remote Zigbee device using a Transmit Request - 0x10frame.
The transmission was sent using the destination's IEEE 64-bit address with a 16-bit network address
of 0xFFFE (unknown).
The corresponding Extended Transmit Status - 0x8B with a matching Frame ID is emitted as a
response to the request:

7E 00 07 8B 52 12 34 02 00 01 D9

Frame
type Frame ID 16-bit dest address

Tx
retries

Delivery
status

Discovery
status

0x8B 0x52 0x1234 0x02 0x00 0x01

Response Matches
request

Discovered NWK
address

2 retries Success Address
discovery

To reduce discovery overhead, the host can retrieve the discovered 16-bit network address from this
response frame to use in subsequent transmissions.

Transmit Status - 0x89
Request frames:

n TX Request: 64-bit address frame - 0x00
n TX Request: 16-bit address - 0x01
n User Data Relay Input - 0x2D

Frame descriptions Transmit Status - 0x89

Digi XBee® 3 Zigbee® RF Module 331

Description
This frame type is emitted when a transmit request completes. The status field of this frame indicates
whether the request succeeded or failed and the reason.
This frame is only emitted if the Frame ID in the request is non-zero.

Note Broadcast transmissions are not acknowledged and always return a status of 0x00, even if the
delivery failed.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Transmit Status - 0x89

4 8-bit Frame ID Identifies the data frame for the host to correlate with a prior
request.

Frame descriptions Transmit Status - 0x89

Digi XBee® 3 Zigbee® RF Module 332

Offset Size
Frame
Field Description

5 8-bit Delivery
status

Complete list of delivery statuses:
0x00 = Success
0x01 = No ACK received
0x02 = CCA failure
0x03 = Indirect message unrequested
0x04 = Transceiver was unable to complete the
transmission
0x21 = Network ACK failure
0x22 = Not joined to network
0x2C = Invalid frame values (check the phone number)
0x31 = Internal error
0x32 = Resource error - lack of free buffers, timers, etc.
0x34 = No Secure Session Connection
0x35 = Encryption Failure
0x74 = Message too long
0x76 = Socket closed unexpectedly
0x78 = Invalid UDP port
0x79 = Invalid TCP port
0x7A = Invalid host address
0x7B = Invalid data mode
0x7C = Invalid interface. See User Data Relay Input - 0x2D.
0x7D = Interface not accepting frames. See User Data Relay
Input - 0x2D.
0x7E = A modem update is in progress. Try again after the
update is complete.
0x80 = Connection refused
0x81 = Socket connection lost
0x82 = No server
0x83 = Socket closed
0x84 = Unknown server
0x85 = Unknown error
0x86 = Invalid TLS configuration (missing file, and so forth)
0x87 = Socket not connected
0x88 = Socket not bound

Refer to the tables below for a filtered list of status codes that are
appropriate for specific devices.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Delivery status codes
Protocol-specific status codes follow

XBee 3 Zigbee
This frame type is only used for indicating errors in sending a User Data Relay request
0x7C = Invalid interface. See User Data Relay Input - 0x2D.
0x7D = Interface not accepting frames. See User Data Relay Input - 0x2D.

Frame descriptions Transmit Status - 0x89

Digi XBee® 3 Zigbee® RF Module 333

XBee Cellular
0x00 = Successful transmit
0x21 = Failure to transmit to cell network
0x22 = Not registered to cell network
0x2C = Invalid frame values (check the phone number)
0x31 = Internal error
0x32 = Resource error (retry operation later). See Socket limits in API mode for more information.
0x74 = Message too long
0x76 = Socket closed unexpectedly
0x78 = Invalid UDP port
0x79 = Invalid TCP port
0x7A = Invalid host address
0x7B = Invalid data mode
0x7C = Invalid interface. See User Data Relay Input - 0x2D.
0x7D = Interface not accepting frames. See User Data Relay Input - 0x2D.
0x7E = A modem update is in progress. Try again after the update is complete.
0x80 = Connection refused
0x81 = Socket connection lost
0x82 = No server
0x83 = Socket closed
0x84 = Unknown server
0x85 = Unknown error
0x86 = Invalid TLS configuration (missing file, and so forth)
0x87 = Socket not connected
0x88 = Socket not bound

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Successful transmission
Host sent a unicast transmission to a remote device using a TX Request: 64-bit address frame -
0x00 frame.
The corresponding 0x89 Transmit Status with a matching Frame ID is emitted as a response to the
request:

7E 00 03 89 52 00 24

Frame type Frame ID Delivery status

0x89 0x52 0x00

Response Matches request Success

https://www.digi.com/resources/documentation/digidocs/90002253/Reference/r_socket_limits.htm

Frame descriptions Receive Packet - 0x90

Digi XBee® 3 Zigbee® RF Module 334

Receive Packet - 0x90
Request frames:

n Transmit Request - 0x10
n Explicit Addressing Command Request - 0x11

Description
This frame type is emitted when a device configured with standard API output—AO (API Options) = 0—
receives an RF data packet.
Typically this frame is emitted as a result of a device on the network sending serial data using
the Transmit Request - 0x10 or Explicit Addressing Command Request - 0x11 addressed either as a
broadcast or unicast transmission.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Receive Packet - 0x90

4 64-bit 64-bit source
address

The sender's 64-bit address.

12 16-bit 16-bit source
address

The sender's 16-bit network address.

Frame descriptions Receive Packet - 0x90

Digi XBee® 3 Zigbee® RF Module 335

Offset Size Frame Field Description

14 8-bit Receive
options

Bit field of options that apply to the receivedmessage:

n Bit 0: Packet was Acknowledged [0x01]
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: Reserved
n Bit 3: Reserved
n Bit 4: Packet was sent across a secure session [0x10]
n Bit 5: Packet encrypted with Zigbee APS security

[0x20]
n Bit 6: Packet was sent from an End Device [0x40]
n Bit 6, 7: DigiMesh delivery method

l b’00 = <invalid option>
l b’01 = Point-multipoint [0x40]
l b’10 = Directed Broadcast [0x80]
l b’11 = DigiMesh [0xC0]

Note Option values may be combined.

15-n variable Received
data

The RF payload data that the device receives.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
A device with the 64-bit address of 0013A20087654321 sent a unicast transmission to a specific
device with the payload of "TxData". The following frame is emitted if the destination is configured
with AO = 0.

7E 00 12 90 00 13 A2 00 87 65 43 21 56 14 01 54 78 44 61 74 61 B9

Frame type 64-bit source 16-bit source Rx options Received data

0x90 0x0013A200
87654321

0x5614 0x01 0x547844617461

Output Network address ACK was sent "TxData"

Frame descriptions Explicit Receive Indicator - 0x91

Digi XBee® 3 Zigbee® RF Module 336

Explicit Receive Indicator - 0x91
Request frames:

n Transmit Request - 0x10
n Explicit Addressing Command Request - 0x11

Description
This frame type is emitted when a device configured with explicit API output—AO (API Options)
bit1 set—receives a packet.
Typically this frame is emitted as a result of a device on the network sending serial data using
the Transmit Request - 0x10 or Explicit Addressing Command Request - 0x11 addressed either as a
broadcast or unicast transmission.
This frame is also emitted as a response to ZDO command requests, see Receiving ZDO command and
responsesfor more information. The Cluster ID and endpoints are used to identify the type of
transaction that occurred.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Explicit Receive Indicator - 0x91

4 64-bit 64-bit source
address

The sender's 64-bit address.

12 16-bit 16-bit source
address

The sender's 16-bit network address.

14 8-bit Source
endpoint

Endpoint of the source that initiated transmission.

15 8-bit Destination
endpoint

Endpoint of the destination that the message is addressed to.

16 16-bit Cluster ID The Cluster ID that the frame is addressed to.

18 16-bit Profile ID The Profile ID that the fame is addressed to.

https://confluence.digi.com/display/RUGCL/0x10+-+Transmit+Request

Frame descriptions Explicit Receive Indicator - 0x91

Digi XBee® 3 Zigbee® RF Module 337

Offset Size Frame Field Description

20 8-bit Receive
options

Bit field of options that apply to the receivedmessage for
packets sent using Digi endpoints (0xDC-0xEE):

n Bit 0: Packet was Acknowledged [0x01]
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: Reserved
n Bit 4: Packet was sent across a secure session [0x10]
n Bit 5: Packet encrypted with Zigbee APS security

[0x20]
n Bit 6: Packet was sent from an End Device [0x40]
n Bit 6, 7: DigiMesh delivery method

l b’00 = <invalid option>
l b’01 = Point-multipoint [0x40]
l b’10 = Directed Broadcast [0x80]
l b’11 = DigiMesh [0xC0]

Note Option values may be combined.

21-n variable Received
data

The RF payload data that the device receives.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
A device with the 64-bit address of 0013A20087654321 sent a unicast transmission to a specific
device with the payload of "TxData". The following frame is emitted if the destination is configured
with AO > 1.

7E 00 18 91 00 13 A2 00 87 65 43 21 87 BD E8 E8 00 11 C1 05 01 54 78 44 61 74 61
37

Frame
type

64-bit
source

16-bit
source

Source
EP

Dest
EP Cluster Profile

Rx
options Received data

0x91 0x0013A200
87654321

0x87BD 0xE8 0xE8 0x0011 0xC105 0x01 0x54784461746
1

Explicit
output

Network
address

Digi
data

Digi
data

Data Digi
profile

ACK was
sent

"TxData"

Frame descriptions Explicit Receive Indicator - 0x91

Digi XBee® 3 Zigbee® RF Module 338

ZDO command - ZDP IEEE Address Response
A ZDP IEEE address request is issued in order to identify the 64-bit address of a Zigbee device with the
16-bit network address of 0x046D. The following response is emitted out of the device that issued the
request if configured to do so. In order to output the response to the ZDO command request, the
sender must be configured to emit explicit receive frames by setting bit 0 of AO (API Options) (AO = 1).
See Receiving ZDO command and responses for more information.

Note Each field in the ZDO frame is in little-endian, the rest of the Digi API frame is big-endian.

7E 00 1E 91 00 13 A2 00 12 34 56 78 04 6D 00 00 80 01 00 00 01 B5 00 78 56 34 12
00 A2 13 00 6D 04 C3

Frame
type

64-bit
source

16-bit
source

Source
EP

Dest
EP Cluster Profile

Rx
options Received data

91 0013A200
12345678

046D 00 00 8001 0000 01 B5
00
78563412
00A21300
6D04

0x91 0x0013A20
0
87654321

0x046D 0x00 0x00 0x8001 0xC105 0x01 n 0xB5
n 0x00
n 0x0013A20

0
12345678

n 0x046D

Explicit
output

Network
address

ZDO ZDO IEEE
Address
Response

ZDO ACK was
sent

n Sequence
Num

n Status

n IEEE
Address

n NWK
Address

Frame descriptions I/O Sample Indicator - 0x92

Digi XBee® 3 Zigbee® RF Module 339

I/O Sample Indicator - 0x92

Description
This frame type is emitted when a device configured with standard API output—AO (API Options) = 0—
receives an I/O sample frame from a remote device. Only devices running in API mode will send I/O
samples out the serial port.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type I/O Sample Indicator - 0x92

4 64-bit 64-bit
source
address

The sender's 64-bit IEEE address.

12 16-bit 16-bit
source
address

The sender's 16-bit network address.

14 8-bit Receive
options

Bit field of options that apply to the receivedmessage:

n Bit 0: Packet was Acknowledged [0x01]
n Bit 1: Packet was sent as a broadcast [0x02]

Note Option values may be combined.

15 8-bit Number of
samples

The number of sample sets included in the payload. This field
typically reports 1 sample.

Frame descriptions I/O Sample Indicator - 0x92

Digi XBee® 3 Zigbee® RF Module 340

Offset Size
Frame
Field Description

16 16-bit Digital
sample
mask

Bit field that indicates which I/O lines on the remote are
configured as digital inputs or outputs, if any:

bit 0: DIO0
bit 1: DIO1
bit 2: DIO2
bit 3: DIO3
bit 4: DIO4
bit 5: DIO5
bit 6: DIO6
bit 7: DIO7
bit 8: DIO8
bit 9: DIO9
bit 10: DIO10
bit 11: DIO11
bit 12: DIO12
bit 13: DIO13
bit 14: DIO14
bit 15: N/A

For example, a digital channel mask of 0x002Fmeans DIO 0, 1,
2, 3, and 5 are enabled as digital I/O.

18 8-bit Analog
sample
mask

Bit field that indicates which I/O lines on the remote are
configured as analog input, if any:

bit 0: AD0
bit 1: AD1
bit 2: AD2
bit 3: AD3
bit 7: Supply Voltage (enabled with V+ command)

19 16-bit Digital
samples (if
included)

If the sample set includes any digital I/O lines (Digital channel
mask > 0), this field contain samples for all enabled digital I/O
lines. If no digital lines are configured as inputs or outputs, this
field will be omitted.
DIO lines that do not have sampling enabled return 0. Bits in
this field are arranged the same as they are in the Digital
channel mask field.

22 16-bit
variable

Analog
samples (if
included)

If the sample set includes any analog I/O lines (Analog channel
mask > 0), each enabled analog input returns a 16-bit value
indicating the ADC measurement of that input.
Analog samples are ordered sequentially from AD0 to AD3.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Frame descriptions I/O Sample Indicator - 0x92

Digi XBee® 3 Zigbee® RF Module 341

I/O sample
A device with the 64-bit address of 0013A20012345678 is configured to periodically send I/O sample
data to a particular device. The device is configured with DIO3, DIO4, and DIO5 configured as digital
I/O, and AD1 and AD2 configured as an analog input.
The destination will emit the following frame:

7E 00 16 92 00 13 A2 00 12 34 56 78 87 AC 01 01 00 38 06 00 28 02 25 00 F8 EA

Frame
type

64-bit
source

16-bit
source

Rx
option
s

Num
sample
s

Digital
channe
l mask

Analog
channe
l mask

Digital
sample
s

Analog
sampl
e 1

Analog
sampl
e 2

0x92 0x0013A20
0
12345678

0x87AC 0x01 0x01 0x0038 0x06 0x0028 0x0225 0x00F8

Sample Networ
k
address

ACK
was
sent

Single
sample
(typical)

b'00
111000
DIO3,
DIO4,
and
DIO5
enabled

b'0110
AD1 and
AD2
enabled

b'00
101000
DIO3
and
DIO5 are
HIGH;
DI04 is
LOW

AD1
data

AD2
data

Frame descriptions Node Identification Indicator - 0x95

Digi XBee® 3 Zigbee® RF Module 342

Node Identification Indicator - 0x95

Description
This frame type is emitted when a node identification broadcast is received. The node identification
indicator contains information about the identifying device, such as address, identifier string (NI), and
other relevant data.
A node identifies itself to the network under these conditions:

n The commissioning button is pressed once.
n A CB 1 command is issued.
n A device with JN (Join Notification) enabled successfully associates with a Zigbee network.
n A device that is associated with a Zigbee network that has JN (Join Notification) enabled is

power cycled.

See ND (Network Discovery) for information on the payload formatting.
See NO (Network Discovery Options) for configuration options that modify the output of this frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Node Identification Indicator - 0x95

4 64-bit 64-bit source
address

The sender's 64-bit address.

12 16-bit 16-bit source
address

The sender's 16-bit network address.

https://www.digi.com/resources/documentation/DigiDocs/90002002/Reference/r_cmd_JN.htm

Frame descriptions Node Identification Indicator - 0x95

Digi XBee® 3 Zigbee® RF Module 343

Offset Size Frame Field Description

14 8-bit Options Bit field of options that apply to the receivedmessage:

n Bit 0: Reserved
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: 802.15.4 only - Packet was broadcast across

all PANs [0x04]
n Bit 4: Reserved
n Bit 5: Reserved
n Bit 6, 7: DigiMesh delivery method

l b’00 = <invalid option>
l b’01 = Point-multipoint [0x40]
l b’10 = Directed Broadcast [0x80]
l b’11 = DigiMesh [0xC0]

Note Option values may be combined.

15 16-bit 16-bit remote
address

The 16-bit network address of the device that sent the
Node Identification.

17 64-bit 64-bit remote
address

The 64-bit address of the device that sent the Node
Identification.

25 variable
(2-byte
minimum)

Node
identification
string

Node identification string on the remote device set by NI
(Node Identifier). The identification string is terminated
with a NULL byte (0x00).

27+NI 16-bit Zigbee 16-bit
parent address

Indicates the 16-bit address of the remote's parent or
0xFFFE if the remote has no parent. Equivalent to MP
(16-bit Parent Network Address).

29+NI 8-bit Network
device type

What type of network device the remote identifies as:
0 = Coordinator
1 = Router
2 = End Device

30+NI 8-bit Source event The event that caused the node identification broadcast
to be sent.

0 = Reserved
1 = Frame sent by node identification pushbutton
event—see D0 (DIO0/AD0/Commissioning Button
Configuration).
2 = Frame sent after joining a Zigbee network—
see JN (Join Notification).
3 = Frame sent after a power cycle event occurred
while associated with a Zigbee network—see JN
(Join Notification).

31+NI 16-bit Digi Profile ID The Digi application Profile ID—0xC105.

Frame descriptions Node Identification Indicator - 0x95

Digi XBee® 3 Zigbee® RF Module 344

Offset Size Frame Field Description

33+NI 16-bit Digi
Manufacturer
ID

The Digi Manufacturer ID—0x101E.

35+NI 32-bit Device type
identifier
(optional)

The user-defined device type on the remote device set by
DD (Device Type Identifier).
Only included if the receiving device has the
appropriate NO (Network Discovery Options) bit set.

EOF-1 8-bit RSSI
(optional)

The RSSI of the last hop that relayed the message.
Only included if the receiving device has the
appropriate NO (Network Discovery Options) bit set.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this
byte—between length and checksum.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Identify remote device
A technician is replacing a DigiMesh device in the field and needs to have the its entry removed from a
cloud server's database. The technician pushes the commissioning button on the old device once to
send an identification broadcast. The server can use the broadcast to identify which device is being
replaced and perform the necessary action.
When the node identification broadcast is sent, every device that receives the message will flash the
association LED and emit the following information frame:

7E 00 27 95 00 13 A2 00 12 34 56 78 FF FE C2 FF FE 00 13 A2 00 12 34 56 78 4C 48
37 35 00 FF FE 01 01 C1 05 10 1E 00 14 00 08 0D

Frame
type

64-bit
source

16-
bit
sourc
e

Optio
ns

16-
bit
remo
te

64-bit
remote NI String

Pare
nt

Devi
ce
type

Eve
nt

Prof
ile
ID

MFG
 ID

0x95 0x0013
A200
123456
78

0xFFF
E

0xC2 0xFFF
E

0x0013
A200
123456
78

0x4C4837
35 00

0xFFF
E

0x01 0x0
1

0xC1
05

0x10
1E

Identific
ation

Unkn
own

DigiMe
sh
broad
cast

Unkn
own

"LH75" +
null

Unkn
own

Rout
er

Butt
on
pres
s

Digi Digi

Identify joining device
A Zigbee end device has join notification enabled by setting JN to 1. When the joining device
successfully associates with a Zigbee network, it will broadcast a node identification message.

Frame descriptions Node Identification Indicator - 0x95

Digi XBee® 3 Zigbee® RF Module 345

The network has a variety of devices that are assigned identifier strings after association; a unique DD
value is set to identify this type of device. The gateway that manages the network has
the NO command set to 1 to display this information.
When the node identification broadcast is sent, every device that receives the message will flash the
association LED and emit the following information frame:

7E 00 24 95 00 13 A2 00 87 65 43 21 77 92 02 77 92 00 13 A2 00 87 65 43 21 20 00
45 A3 02 02 C1 05 10 1E 00 12 00 27 13

Frame
type

64-
bit
sour
ce

16-bit
sourc
e

Opti
ons

16-bit
remote

64-
bit
rem
ote

NI
Stri
ng

Par
ent

Dev
ice
typ
e

Eve
nt

Prof
ile
ID

DD
value

0x95 0x0013
A200
876543
21

0x7
792

0x02 0x77
92

0x0013
A200
123456
78

0x20
00

0x4
5A3

0x0
2

0x0
2

0xC
105

0x1
01E

0x0012
0027

Identific
ation

Broad
cast

No
NI
strin
g set

End
devi
ce

Join
ed

Digi Digi Zigbee
+ User-
defined

Frame descriptions Remote AT Command Response- 0x97

Digi XBee® 3 Zigbee® RF Module 346

Remote AT Command Response- 0x97
Request frame: Remote AT Command Request - 0x17

Description
This frame type is emitted in response to a Remote AT Command Request - 0x17. Some commands
send back multiple response frames; for example, the ND command. Refer to individual AT command
descriptions for details on API response behavior.
This frame is only emitted if the Frame ID in the request is non-zero.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Remote AT Command Response - 0x97

4 8-bit Frame ID Identifies the data frame for the host to correlate with a prior
request.

5 64-bit 64-bit
source
address

The sender's 64-bit address.

13 16-bit 16-bit
source
address

The sender's 16-bit network address.

15 16-bit AT
command

The two ASCII characters that identify the AT Command.

17 8-bit Command
status

Status code for the host's request:
0x00 = OK
0x01 = ERROR
0x02 = Invalid command
0x03 = Invalid parameter
0x04 = Transmission failure

Statuses for Secured remote AT commands:
0x0B = No Secure Session - Remote command access
requires a secure session be established first
0x0C = Encryption error
0x0D = Command was sent insecurely - A Secure
Session exists, but the request needs to have the
appropriate command option set (bit 4).

Frame descriptions Remote AT Command Response- 0x97

Digi XBee® 3 Zigbee® RF Module 347

Offset Size Frame Field Description

18-n variable Parameter
value
(optional)

If the host requested a command parameter change, this field
will be omitted.
If the host queried a command by omitting the parameter
value in the request, this field will return the value currently set
on the device.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set remote command parameter
Host set the NI string of a remote device to "Remote" using a Remote AT Command Request - 0x17.
The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted as a
response:

7E 00 0F 97 27 00 13 A2 00 12 34 56 78 12 7E 4E 49 00 51

Frame
type Frame ID 64-bit source

16-bit
source

AT
command

Command
Status Command data

0x97 0x27 0x0013A200
12345678

0x127E 0x4E49 0x00 (omitted)

Response Matches
request

Network
address

"NI" Success Parameter changes
return no data

Transmission failure
Host queued the the PAN ID change of a remote device using a Remote AT Command Request - 0x17.
Due to existing network congestion, the host will retry any failed attempts.
The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted as a
response:

7E 00 0F 97 27 00 13 A2 00 12 34 56 78 FF FE 49 44 04 EA

Frame
type Frame ID 64-bit source

16-bit
source

AT
command

Command
Status Command data

0x97 0x27 0x0013A200
12345678

0xFFFE 0x4944 0x04 (omitted)

Response Matches
request

Unknown "ID" Transmission
failure

Parameter
changes return
no data

Frame descriptions Remote AT Command Response- 0x97

Digi XBee® 3 Zigbee® RF Module 348

Query remote command parameter
Query the temperature of a remote device—TP (Temperature).
The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted with
the temperature value as a response:

7E 00 11 97 27 00 13 A2 00 12 34 56 78 FF FE 54 50 00 00 2F A8

Frame
type Frame ID 64-bit source

16-bit
source

AT
command

Command
Status

Command
data

0x97 0x27 0x0013A200
12345678

0x127E 0x4944 0x00 0x002F

Response Matches
request

Network
address

"TP" Success +47 °C

Frame descriptions Extended Modem Status - 0x98

Digi XBee® 3 Zigbee® RF Module 349

Extended Modem Status - 0x98

Description
This frame type can be used to troubleshoot Zigbee network association. To enable verbose join
information, use DC (Joining Device Controls).

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Extended Modem Status - 0x98

4 8-bit Status code Refer to the tables below for appropriate status codes

n variable Status data
(optional)

Additional fields that provide information about the status

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Secure Session status codes
When AZ (Extended API Options) is configured to output extended secure session statuses,
whenever Secure Session API Frames are emitted, the extendedmodem status will provide additional
details about the event.

Status
code Description

Status
data Size Description

0x3B A Secure Session
was established with
this node

Address 64-bit The address of the client in the session.

Options 8-bit Session options set by the client.

Timeout 16-bit Session timeout set by the client.

Frame descriptions Extended Modem Status - 0x98

Digi XBee® 3 Zigbee® RF Module 350

Status
code Description

Status
data Size Description

0x3C A Secure Session
ended

Address 64-bit The address of the other node in this session.

Reason 8-bit The reason the session was ended:
0x00 - Session was terminated by the
other node
0x01 - Session Timed out
0x02 - Received a transmission with an
invalid encryption counter
0x03 - Encryption counter overflow -
the maximum number of transmissions
for a single session has been reached
0x04 - Remote node out of memory

0x3D A Secure Session
authentication
attempt failed

Address 64-bit Address of the client node.

Error 8-bit Error that caused the authentication to fail.
See Secure Session Response - 0xAE for a list
of error statuses.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Secure Session established
A device has established a secure session with the local node that has AZ (Extended API
Options) configured to output extended secure session information. The following frame is emitted
that announces the secure session establishment.

7E 00 0D 98 3B 00 13 A2 00 12 34 56 78 00 46 50 CD

Frame type Status code Status data

0x98 0x3B n 0x0013A20012345678
n 0x00
n 0x4650

Extended status Secure Session established n Address
n Options
n Timeout (30 min)

Zigbee Verbose join messages
The following example shows a successful association of a device that has DC (Joining Device
Controls) configured to enable Verbose Join messages. The device is operating in Transparent mode—
AP = 0—to allow a human-friendly way to troubleshoot association issues, if set for API mode—AP =
1—equivalent 0x98 Extended Modem Status frames would be emitted.

Frame descriptions Extended Modem Status - 0x98

Digi XBee® 3 Zigbee® RF Module 351

Message Description

V AI -SearchingforParent:FF ...search has started

V Scanning:03FFF800 ...channels 11 through 25 are enabled by the
SC setting for the Active Search.

V BeaconRsp:0000000000000042A6010B949AC8FF n ZS = 0x00
n extendedPanId = 00000000000042A6
n allowingJoin 0x01 (yes)
n radiochannel 0x0B
n panid 0x949A
n rssi 0xC8
n lqi = 0xFF

V Reject ID ...beacon response's extendedPanId does not
match this radio's ID setting of 3151

V BeaconRsp:0200000000000002AB010C55D2B2DB n ZS = 0x02
n extendedPanId =

0x00000000000002AB
n allowingJoin = 0x01 (yes)
n radiochannel = 0x0C
n panid = 0x55D2
n rssi = 0xB2
n lqi = 0xDB

V Reject ZS ...beacon response's ZS does not match this
radio's ZS setting

V BeaconRsp:000000000000003151010EE29FDFFF

V BeaconSaved:0E05E29F0000000000003151 ...this beacon response is acceptable as a
candidate for association

V Joining:0E05E29F0000000000003151 ...sending association request

V StackStatus: joined, network up 0290 ...we are joined, the network is up, we can
send and transmit

V Joined unsecured network:

V AI -AssociationSucceeded:00

Fram
e
descriptions

Extended
M
odem

Status-0x98

DigiXBee®3
Zigbee®RF

M
odule

352

Zigbee Verbose Join status codes
The following table describes the various Verbose Join trace messages in Status Code order. The Transparent mode string column shows the string which
appears if you run Verbose Join in Commandmode. The Description column gives a more detailed explanation of each particular message. When a
message accompanies Status Data, the Status Data column shows how to parse the hexadecimal string into fields. The Size column shows the number of
bytes per field.

Status
code

Transparent
mode string Description Status data Size Description

0x00 Rejoin A join attempt is being started. rejoinState 8-bit The rejoinState is a count of join attempts.

Fram
e
descriptions

Extended
M
odem

Status-0x98

DigiXBee®3
Zigbee®RF

M
odule

353

Status
code

Transparent
mode string Description Status data Size Description

0x01 Stack Status Shows status and state. Status 8-bit 0x00 - no network
0x01 - joining
0x02 - joined
0x03 - joined (no parent)
0x04 - leaving

NetworkState 8-bit 0x90 - Network is up and ready to
receive/transmit.
0x91 - Network is down and cannot
receive/transmit.
0x94 - Join attempt failed.
0x96 - A node's attempt to re-establish contact
with the network after moving failed.
0x98 - A join attempt as a router failed due to a
Zigbee 2006 versus Zigbee PRO 2007
incompatibility. Try to join as an end device.
0x99 - The network ID has changed.
0x9A - The PAN ID has changed.
0x9B - The channel has changed.
0xAB - No beacons were received in response to
a beacon request.
0xAC - Received key in the clear.
0xAD - No network key received.
0xAE - No link key received.
0xAF - Preconfigured key required—Settings for
KYmay not match.

Fram
e
descriptions

Extended
M
odem

Status-0x98

DigiXBee®3
Zigbee®RF

M
odule

354

Status
code

Transparent
mode string Description Status data Size Description

0x02 Joining An association request is being made. radioChannel 8-bit Channel number ranging from 11 to 26 (0x0B to
0x1A)

radioTxPower 8-bit Low level signed byte value for transmit power,
values range from 0xC9 to 0x05 inclusive

panid 16-bit 16-bit PAN Identifier for the network

extendedPanId 64-bit 64-bit extended PAN Identifier for network

0x03 Joined Coordinator “Formed”, Router/End Device
“Joined” and whether the network formed or
joined is a "secure network" or an
"unsecured network."

0x04 Beacon
Response

Data received from a neighboring node in
response to a beacon request

ZS[stackProfile] 8-bit See ZS (Zigbee Stack Profile).

extendedPanId 64-bit 64-bit Extended PAN Identifier for network

allowingJoin 8-bit 0x00 - not permitting joins to its network
0x01 - permitting joins to its network

radioChannel 8-bit Channel number ranging from 11 to 26—0x0B to
0x1A

panid 16-bit 16-bit PAN Identifier for network

rssi 8-bit Maximum relative signal strength indicator
value measured in units of dBm (applies to last
hop only)

lqi 8-bit Link quality indicator

0x05 Reject ZS Not an association candidate because ZS
does not match that given in the beacon
response.

Fram
e
descriptions

Extended
M
odem

Status-0x98

DigiXBee®3
Zigbee®RF

M
odule

355

Status
code

Transparent
mode string Description Status data Size Description

0x06 Reject ID Not an association candidate because
configured pan ID does not match that given
in the beacon response.

0x07 Reject NJ Not an association candidate because it is
not allowing joins.

0x08 panID Match JV/NW with search option (DO80) has found a
matching network.

panId 16-bit 16-bit PAN Identifier for network

0x09 Reject LQIRSSI JV/NWwith search option (DO80) candidate
rejected because this beacon response is
weaker than an earlier beacon response.

0x0A Beacon Saved This beacon response is a suitable candidate
for an association request.

radioChannel 8-bit Channel number ranging from 11 to 26 (0x0B to
0x1A)

radioTxPower 8-bit Low level signed byte value for transmit power,
values range from 0xC9 to 0x05 inclusive

panid 16-bit 16-bit PAN Identifier for network

extendedPanId 64-bit 64-bit Extended PAN Identifier for network

0x0B AI AI value has changed. AIStatusCode 8-bit See a description of AI (Association Indication)

0x0C Permit Join NJ setting (Permit Join Duration) has
changed

value 8-bit See a description of the NJ (Node Join Time)
command.

0x0D Scanning Active scanning has begun. ChannelMask 32-bit A 32-bit value driven by the SC setting where bit
positions 11 through 26 show which channels
are enabled for the upcoming Active Scan. See a
description of SC (Scan Channels).

0x0E Scan Error An error occurred during active scan. StatusCode 8-bit

Fram
e
descriptions

Extended
M
odem

Status-0x98

DigiXBee®3
Zigbee®RF

M
odule

356

Status
code

Transparent
mode string Description Status data Size Description

0x0F Join Request High level request for a form/join.

0x10 Reject LQI Reject because LQI is worse than an already
saved beacon

lqi 8-bit Link quality indicator

0x11 Reject RSSI Rejected because RSSI is worse than an
already saved beacon

rssi 8-bit Relative signal strength indicator

0x12 Rejected
(cmdLast)

Rejected because it matches the last
associated network.

0x13 Rejected
(cmdSave)

Rejected because it matches an already
saved beacon response.

0x14 Reject strength During first/best phase, response is weaker
than an already saved beacon response.

0x16 Reset for DC80 With DC80 enabled, reset if no joinable
beacon responses are received within 60s of
joining.

0x18 ScanCh Scanning on Channel radioChannel 8-bit Channel number ranging from 11 to 26 (0x0B to
0x1A)

0x19 Scan Mode Shows phase of Ordered Association. mode 8-bit 0x00: First/best candidate
0x01: Ordered association by extpanid, then by
channel

0x1A Scan Init Starting a scan channel 8-bit Channel being scanned

TxPower 8-bit Low level radio transmit power setting

0x1D Energy Scan -
channel mask

Starting energy scan SC mask 32-bit Scan channel mask

0x1E Energy Scan -
energies

Channel Energies observed Energies 128-
bit

Energy Levels per channel in SC

Fram
e
descriptions

Extended
M
odem

Status-0x98

DigiXBee®3
Zigbee®RF

M
odule

357

Status
code

Transparent
mode string Description Status data Size Description

0x1F PanIdScan -
radio channel

Pan Id Scan starting on channel channel 8-bit Radio Channel

0x20 FormNetwork -
parameters

Forming a network radioChannel 8-bit Channel number ranging from 11 to 26

radioTxPower 8-bit Low level radio transmit power setting

panid 16-bit 16-bit PAN identifier for network

extendedpanid 64-bit 64-bit Extended PAN identifier for network

0x21 Discovering KE
Endpoint

Looking for Key Establishment Endpoint

0x22 KE Endpoint Found Key Establishment Endpoint Endpoint 8-bit Endpoint number

0x23 Key exchange
timeout

The key exchange process timed out.

0x24 Key established The key has been established.

0x25 Key verified The key has been verified.

0x26 Need new key A key exchange is required to join the
network.

0x27 Key join done The key exchange process has completed
successfully.

0x28 Ch verify fail Channel verification failed during the join
process.

0x29 LK update fail The link key update failed during the join
process.

0x2A Key verify
timeout

The link key update timed out during the join
process.

Fram
e
descriptions

Extended
M
odem

Status-0x98

DigiXBee®3
Zigbee®RF

M
odule

358

Status
code

Transparent
mode string Description Status data Size Description

0x2B Unknown key
fail

An unknown error occurred in the key
exchange process.

0x2C Request from: Coordinator only. A request to join was
received.

EUI64 64-bit The EUI64 of the radio requesting to join.

0x2D EUI64 in key
table

Coordinator only. A centralized trust center
has found an entry in the transient key table
for a device requesting to join the network.

0x2E "Joining
allowed:" or
"Joining not
allowed:"

Coordinator only. Indicate whether or not
joining is currently allowed.

Joining allowed 8-bit 1 if joining is allowed, else 0.

Frame descriptions Route Record Indicator - 0xA1

Digi XBee® 3 Zigbee® RF Module 359

Route Record Indicator - 0xA1

Description
This frame type contains the routing information for a remote device on the network. This route
information should be stored in external memory and used in a Create Source Route - 0x21 frame to
provide a return route for subsequent data transmissions; this eliminates the need to perform a route
discovery.
This frame type is emitted when a network concentrator receives a route record from a remote
device. The type of concentrator determines how often this frame type is emitted: a high RAM
concentrator (the default) will emit this frame type when a unicast data transmission is received for
the first time. If a previously established route fails, a new 0xA1 Route Record Indicator will be
generated. A low RAM concentrator will emit this frame for every received transmission. Concentrator
type is determined by DO (Miscellaneous Device Options) bit 6.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Route Record Indicator - 0xA1

5 64-bit 64-bit
source
address

The 64-bit IEEE address of the device that initiated the route
record.

13 16-bit 16-bit
source
address

The 16-bit network address of the device that initiated the
route record.

15 8-bit Receive
Options

Bit field of options that apply to the receivedmessage:

n Bit 0: Packet was Acknowledged [0x01]
n Bit 1: Packet was sent as a broadcast [0x02]

16 8-bit Number of
addresses

The number of addresses in the source route—excluding source
and destination.

17-n 16-bit
variable

Address The 16-bit network address(es) of the devices along the source
route, excluding the source and destination.
The addresses are in order from destination to source and
match the order to be entered into the Create Source Route -
0x21 frame.

Frame descriptions Route Record Indicator - 0xA1

Digi XBee® 3 Zigbee® RF Module 360

Offset Size
Frame
Field Description

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

4-hop route
A remote device sends a unicast transmission to a concentrator that is 4-hops away. The concentrator
emits a route record that can be stored for use in a subsequent Create Source Route - 0x21 frame
prior to sending data back to the remote.
The route looks like this:
Destination (concentrator) <> Router A <> Router B <> Router C <> Source (remote)

7E 00 13 A1 00 13 A2 00 12 34 56 78 DD DD 01 03 CC CC BB BB AA AA 75

Frame
type

64-bit
source

16-bit
source Options

Num of
addresses

Address
1 Address 2 Address 3

0xA1 0x0013A200
12345678

0xDDDD 0x01 0x03 0xCCCC 0xBBBB 0xAAAA

Route Source IEEE
address

Source
NWK
address

3 Neighbor
of source

Intermediate
hop

Neighbor of
destination

Frame descriptions Registration Status - 0xA4

Digi XBee® 3 Zigbee® RF Module 361

Registration Status - 0xA4
Request frame: Register Joining Device - 0x24

Description
This frame type is emitted in response to registering a device to a trust center using the Register
Joining Device - 0x24 frame and indicates whether the registration attempt succeeded or not.
This frame is only emitted if the the Frame ID in the request is non-zero.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Register Device Status - 0xA4

4 8-bit Frame ID Identifies the data frame for the host to correlate with a prior
request.

5 8-bit Registration
status

Status code for the registration request:
0x00 = Success
0x01 = Key too long
0x18 = Transient key table is full
0xB1 = Address not found in the key table
0xB2 = Key is invalid (00 and FF are reserved)
0xB3 = Invalid address
0xB4 = Key table is full
0xBD = Security data is invalid (Install code CRC fails)

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Successful registration
A device is registered with a trust center using a Register Joining Device - 0x24 frame.
The corresponding 0xA4 Registration Status response with a matching Frame ID is emitted as a
response:

7E 00 03 A4 5D 00 FE

Frame descriptions Registration Status - 0xA4

Digi XBee® 3 Zigbee® RF Module 362

Frame type Frame ID Status

0xA4 0x5D 0x00

Response Matches request Success

Frame descriptions Many-to-One Route Request Indicator - 0xA3

Digi XBee® 3 Zigbee® RF Module 363

Many-to-One Route Request Indicator - 0xA3

Description
This frame type is emitted on devices that receive a many-to-one route request from a network
concentrator. Typically, a device that emits this frame type should send a unicast message to the
sender so a route record can be generated.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Many-to-One Route Request Indicator - 0xA3

4 64-bit 64-bit source
address

The 64-bit IEEE address of the device that sent the many-to-one
route request.

12 16-bit 16-bit source
address

The 16-bit network address of the device that sent the many-to-
one route request.

14 8-bit Receive
options
(reserved)

Options are not available yet. This bit field is reserved for future
functionality.
This field returns 0.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Many-to-one route request
A gateway is configured for many-to-one routing by setting AR (Aggregate Routing Notification) to
send a many-to-one route request every 10 minutes—AR = 0x3C.
Whenever an aggregator broadcast is sent, the following frame is emitted on all devices:

7E 00 0C A3 00 13 A2 00 87 65 43 21 00 00 00 57

Frame descriptions BLE Unlock Response - 0xAC

Digi XBee® 3 Zigbee® RF Module 364

Frame type 64-bit source 16-bit source Reserved

0xA3 0x0013A200
87654321

0x0000 0x00

MTORR NWK address

BLE Unlock Response - 0xAC
Request frame: BLE Unlock Request - 0x2C

Description
This frame type is emitted in response to a BLE Unlock Request - 0x2C during a multi-stage BLE
authentication exchange.
This frame's format is identical to that of the originating request. Refer to BLE Unlock Request -
0x2C for information on the formatting and proper use of this frame.

User Data Relay Output - 0xAD
Input frame: User Data Relay Input - 0x2D

Description
This frame type is emitted when user data is relayed to the serial port from a local interface:
MicroPython (internal interface), BLE, or the serial port.
For information and examples on how to relay user data using MicroPython, see Send and receive
User Data Relay frames in the MicroPython Programming Guide.
for information and examples on how to relay user data using BLE, see Communicate with a
Micropython application in the XBee Mobile SDK user guide.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type User Data Relay Output - 0xAD

4 8-bit Source
Interface

The intended interface for the payload data:
0 = Serial port—SPI, or UART when in API mode
1 = BLE
2 = MicroPython

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm

Frame descriptions Secure Session Response - 0xAE

Digi XBee® 3 Zigbee® RF Module 365

Offset Size
Frame
Field Description

5-n variable Data The user data to be relayed

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Error cases
Errors are reported in a Transmit Status - 0x89 frame that corresponds with the Frame ID of the Relay
Data frame:

Error
code Error Description

0x7C Invalid Interface The user specified a destination interface that does not exist or is
unsupported.

0x7D Interface not
accepting frames

The destination interface is a valid interface, but is not in a state that
can accept data.
For example: UART not in API mode, BLE does not have a GATT client
connected, or buffer queues are full.

If the message was relayed successfully, no status will be generated.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Relay from Bluetooth (BLE)
A mobile phone sends a serial data message to the XBee device's BLE interface. The message is
flagged to be sent out of the serial port of the XBee device. The following frame outputs the relayed
data:

7E 00 0C AD 01 52 65 6C 61 79 20 44 61 74 61 BA

Frame type Source interface Data

0xAD 0x01 0x52656C61792044617461

Output Bluetooth "Relay Data"

Secure Session Response - 0xAE
Request frame: Secure Session Control - 0x2E

Description
This frame type is output as a response to a Secure Session Control - 0x2E attempt. It indicates
whether the Secure Session operation was successful or not.

Frame descriptions Secure Session Response - 0xAE

Digi XBee® 3 Zigbee® RF Module 366

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Secure Session Response - 0xAE

4 8-bit Response type The type of response to correlate with the preceding request:
0x00 - Login response
0x01 - Logout response
0x02 - Server Termination

5 64-bit 64-bit source
address

The 64-bit IEEE address of the responding device.

13 8-bit Status Typical statuses:
0x00 - SRP operation was successful
0x01 - Invalid Password - SRP verification failed due to
mismatchedM1 andM2 values
0x02 - Session request was rejected as there are too
many active sessions on the server already
0x03 - Session options or timeout are invalid
0x05 - Timed out waiting for the other node to respond
0x06 - Could not allocate memory needed for
authentication
0x07 - A request to terminate a session in progress has
been made
0x08 - There is no password set on the server
0x09 - There was no initial response from the server
0x0A - Data within the frame is not valid or formatted
incorrectly

Atypical statuses:
0x80 - Server received a packet that was intended for a
client or vice-versa
0x81 - Received an SRP packet we were not expecting
0x82 - Offset for a split value (A/B) came out of order
0x83 - Unrecognized or invalid SRP frame type
0x84 - Authentication protocol version is not supported
0xFF - An undefined error occurred

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Secure Session Login attempt
A client attempted to log into a Secure Session server.

Frame descriptions Secure Session Response - 0xAE

Digi XBee® 3 Zigbee® RF Module 367

The following Secure Session Response - 0xAE is emitted as a response:

7E 00 0B AE 00 00 13 A2 00 12 34 56 78 00 88

Frame type Response type 64-bit source Status

0x2E 0x00 0x0013A200
12345678

0x00

Response Login success

OTA firmware/file system upgrades

Overview 369
Scheduled upgrades 369
Create an OTA upgrade server 370

Digi XBee® 3 Zigbee® RF Module 368

OTA firmware/file system upgrades Overview

Digi XBee® 3 Zigbee® RF Module 369

Overview
The XBee 3 Zigbee RF Module supports two kinds of over-the-air upgrades:

n Firmware upgrades: upgrading the firmware or bootloader code on a device remotely.
n File System upgrades: placing or replacing the entire file system on a remote device.

An OTA upgrade is performed using two XBee3 RF modules: The client module is the module being
upgraded, and the server module is connected to an external processor (the OTA upgrade server)
and used to send the upgrade to the client. XCTU and Network Manager are capable of acting as an
OTA upgrade server, and are the recommendedmethod for distributing OTA upgrades. See Create an
OTA upgrade server for more information on the OTA upgrade protocol.

Firmware over-the-air upgrades
A firmware OTA upgrade upgrades either just the application firmware or both the application
firmware and the bootloader firmware on a device. OTA firmware upgrades must be to a different
version, re-installing the same version as what is already installed is not supported.

Note Performing an OTA upgrade will erase any file system or bundled MicroPython code on the
target device, even if the OTA upgrade does not complete.

File system over-the-air upgrades
A file system OTA upgrade uses the same protocol as a firmware OTA upgrade, but instead of
changing the device firmware it installs a new image to the target module's file system. This method
does not allow writing individual files, only copying an entire file system image at once. See OTA file
system upgrades for more information on creating and sending file system images.

Scheduled upgrades
When a client has finished downloading the data for an OTA upgrade, it sends a request to the server
asking when to apply the upgrade. The server can instruct the client to upgrade immediately, to wait
a specified amount of time before upgrading, or to wait for a further command from the server to
upgrade. If instructed to wait, the device will keep the downloaded upgrade for the specified time and
then apply it. If a client looses track of time—for example, due to power loss—it will attempt to re-
send the request for an upgrade time to the server and resume waiting. If the device does not receive
a response to this request after a number of attempts, it applies the upgrade immediately.

Note Sleeping devices do not count time towards the upgrade while asleep. The delay for a scheduled
upgrade on a sleeping end device should be calculated only considering the time that device will be
awake.

Different OTA upgrade server tools have varying levels of support for scheduled upgrades. See the
documentation for the OTA upgrade server you are using, or see Create an OTA upgrade server for
information on how to implement scheduled upgrades on a server.

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 370

Create an OTA upgrade server

ZCL firmware upgrade cluster specification
The process, format, and commands used for OTA firmware upgrades are based on the ZCL OTA
Upgrade cluster from the ZCL specification. The specification used is in Zigbee document 07-5123-06.
Chapter 2 describes the general format of ZCL commands and chapter 11 describes the OTA upgrade
cluster in detail. The specification contains a complete description of the OTA upgrade process, and
you should reference it when creating an OTA upgrade server. This guide focuses on differences and
examples specific to the XBee 3 Zigbee RF Module. Where relevant, we refer to the ZCL specification
document by section, for example (ZCL Spec §11.2.1).

Differences from the ZCL specification
The OTA upgrade process differs from what is described in the ZCL specification in the following ways:

n Setting/querying OTA cluster attributes and parameters (ZCL Spec §11.10, §11.11) is not
supported.

n The WAIT_FOR_DATA status in an Image Block Response Command (ZCL Spec §11.13.8) is not
supported.

n Devices will not automatically discover an OTA upgrade server upon joining a network (ZCL
Spec §11.8). To specify an OTA server set US (OTA Upgrade Server), or leave it at its default
value to accept OTA upgrades from any server.

n Clients do not automatically query the server for an available upgrade. The only way to start an
OTA upgrade is by sending an Image Notify command from the server.

OTA files
Use an OTA file to perform an OTA upgrade. The OTA file format consists of an OTA header describing
what is present in the file followed by one or more sub-elements containing the upgrade data. The
OTA file format is described in the ZCL Spec §11.4.
The OTA file is included alongside other firmware files in each release. The file with the .ota extension
contains the application firmware update, and the file with the .otb extension contains updates for
both the firmware and the bootloader. The recommended bootloader version is listed in each
firmware release's XML file—if the target device has an older version, we strongly recommend that
you perform the OTA update using the .otb file. Updating a device with the same or newer bootloader
version as the recommended version will not change the bootloader, but will update the application.

OTA header
The OTA header contains information about the upgrade data contained in the file. An OTA server
needs to parse this file in order to get information that will be requested by a file. The OTA header
format is (ZCL Spec §11.4.2):

Offset Length Name Description

0 4 OTA upgrade
file identifier

Unique identifier for an OTA file - will always be 0x0BEEF11E.

https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 371

Offset Length Name Description

4 2 OTA header
version

Version for the OTA header format - The OTA header version
supported by XBee 3 firmwares is 0x0100.

6 2 OTA header
length

The length in bytes of this OTA header.

8 2 OTA header
field control

Indicates what optional fields are present.

10 2 Manufacturer
code

The manufacturer code for the image.

12 2 Image type One of two values:

n 0x0000 for a firmware upgrade
n 0x0100 for a file system upgrade

14 4 File version Contains the version information for this upgrade. See File
version definition for more information on how to interpret
this field.

Note It is important to parse this value from the OTA file
itself instead of inferring it from the file name, as the
software compatibility number is not included elsewhere.

18 2 Zigbee stack
version

The Zigbee stack version used by the application. This field is
informational for the server and is not used during the
upgrade process.

Note For XBee 3 Zigbee firmwares, the value of this field is 2
indicating Zigbee Pro—see ZCL Spec §11.4.2.8 for a full list of
values. The actual Zigbee stack profile used by the device
may differ depending on the value of the ZS command.

20 32 OTA header
string

A human-readable string to identify the OTA file.

52 4 Total image
size

The total size of the OTA file, including the OTA header.

Note This field contains incorrect information in most older
firmware files and should not be used in the update process.
The total size of the file should be determined using an
external method.

Note All fields—except for the OTA header string—are in little endian byte order. Optional fields may
be present at the end of the OTA header, they have been omitted here as they are not used in the
XBee 3 upgrade process.

File version definition
The file version is a 32-bit integer—sent in little-endian byte order—containing information on a
firmware version. It is divided into two fields:

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 372

n The most significant byte corresponds to the compatibility number field in the firmware's XML
file—see %C (Hardware/Software Compatibility)—for a description of the compatibility
number's effect on loading firmware.

n The remaining three bytes indicate the firmware version as reported by VR.

For example, a file version of 0x0100100A indicates that the software compatibility number is 1 and
the version number is 100A. 0x0200300B indicates that the software compatibility number is 2 and
the version is 300B.

Sub-elements
All data after the OTA header is organized into sub-elements. Most OTA files will contain a single sub-
element: the upgrade image. Sub-elements are arranged as tag-length-value triplets, as shown in the
table below.

Offset Length Field name Description

0 2 Sub-element
tag

The tag for the sub-element, in little-endian format. This is
usually 0x0000 for 'upgrade image'—this is the case for both
firmware upgrades and file system upgrades.

2 4 Sub-element
length

The length of the sub-element data (n) in little-endian format.

6 n Sub-element
data

The data to be transferred. This is either the contents of a .gbl
firmware image or a signed file system image.

OTA upgrade process
The OTA upgrade process is performed by sending OTA commands between the client and server. OTA
commands are sent as explicitly addressed packets, as described in OTA commands.
To initiate an OTA upgrade, the upgrade server sends an Image Notify Command, either to a single
device or as a broadcast. After that initial transmission, the OTA process is driven by the client—or
clients, if the Image Notify command is sent as a broadcast and accepted by multiple clients. The
client sends requests to the server to request the image information, download it, and request when
to upgrade. If the client does not receive a response from the server, it retries its request a few times
before aborting the upgrade. The requests sent by the client are designed so that the server does not
have to store any state related to a client's upgrade in progress—it only needs to send the image
notify and respond to requests as they come in. The server can still observe these requests to track
the state of an upgrade if desired, however—for example, to report download progress.
The following diagram shows the sequence of transmissions for an OTA upgrade:

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 373

OTA commands
All OTA commands are sent as explicitly addressed packets with the following address information:

n Source/destination endpoint: 0xE8
n Cluster ID: 0x0019
n Profile ID: 0xC105

The first three payload bytes of the command indicate what the command is and the structure of the
remaining data in the command. All integer values in OTA commands are represented using little-
endian byte order.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

374

Image Notify command
(see ZCL Spec §11.13.3)
The Image Notify command is sent by the server to alert clients that an upgrade is available and prompt them to begin the upgrade. This command can
be sent either as a broadcast or as a unicast:

n If sent as a unicast, the client will respond with a Query Next Image Request if the Image Notify contains valid information, and with a default
response otherwise.

n If sent as a broadcast, all receiving clients will examine any optional fields included and respond only if the information indicates an image
compatible with that device. On large networks, the query jitter parameter can be used to make only a percentage of those receiving the
command respond at a time.

ZCL command format

Offset Length Field Name Description

0 1 Frame control When sending this command, value to set depends on whether the command will be sent as a broadcast or a
unicast:

n if sending a unicast: set this field to 0x09 (server-to-client command).
n if sending a broadcast: set this field to 0x19 (server-to-client command, Default Response disabled).

1 1 Sequence
number

Any sequence number can be used for the Image Notify

2 1 Command ID 0x00 for Image Notify

3 1 Payload type Indicates which fields are present:
0: No optional fields (Query Jitter only)
1: Query Jitter, Manufacturer Code
2: Query Jitter, Manufacturer Code, Image Type
3: Query Jitter, Manufacturer Code, Image Type, File Version

4 1 Query jitter A number, 0-100, must be set to 100 for a unicast. If less than 100 for a broadcast, then each receiving device
will generate a random number and only respond to this command if that generated number is less than the
query jitter.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

375

Offset Length Field Name Description

5 2 Manufacturer
code

Optional. The Manufacturer code for the available image, parsed from the OTA file header.

7 2 Image type Optional. The image type of the available image, parsed from the OTA file header.

9 4 New file
version

Optional. The version parsed from the available image's OTA file header.

Example
To send this command from a server device, use the following Explicit Addressing Command Request - 0x11:

7E 00 21 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 09 01 00 03 64 1E 10 00 00 0A 20 00 01 18

The payload portion of the API frame (starting at offset 23) is shown below:

Frame
control

Sequence
number

Command
ID

Payload
type Query jitter

Manufacturer
code Image type New file version

Data 09 01 00 03 64 1E 10 00 00 0A 20 00 01

Value 0x09 0x01 0x00 0x03 0x64 (100) 0x101E 0x0000 0x0100200A

Description Image
Notify

All fields
present

Client will always
respond

Digi's
manufacturer
code

Firmware
upgrade

Must match value in the
OTA file header.
0x01: Software
compatibility number
0x00200A: Application
version

Additional error cases
If a client receives a unicast Image Notify command that includes any optional fields—Manufacturer ID, Image Type, New File Version—and those fields do
not match what the client is expecting, it will send a default response to the server. See Default Response command for more information on possible
error cases.

Query Next Image Request command
(See ZCL Spec §11.13.4)

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

376

The Query Next Image Request command is sent by the client to ask for information on any available OTA Upgrade. It is sent in response to an Image
Notify from the server.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Will be set to 0x01, indicating a client to server command.

1 1 Sequence
number

Sequence number chosen by the client.

2 1 Command ID 0x01 for Query Next Image Request.

3 1 Field control Indicates which optional fields are present.

4 2 Manufacturer
code

Manufacturer code of the client.

6 2 Image type Image type that the client is requesting:

n 0x0000 for a firmware upgrade
n 0x0100 for a file system upgrade

8 4 Current file
version

Firmware version that is currently running on the client. See File version definition for more information on how
to interpret this field.

Note The compatibility number reported in the current file version field refers to the installed firmware's
compatibility number, which may be different from the %C value of the device.

12 2 Hardware
version

Optional. Hardware version of the client.

Example
This is an example Explicit Rx Indicator (0x91) frame containing a Query Next Image Request that could be received by a server:

7E 00 1E 91 00 13 A2 00 55 66 77 88 FF FE E8 E8 00 19 C1 05 01 01 02 01 00 1E 10 00 00 06 20 00 01 F9

The payload portion of the API frame (starting at offset 21) is shown below:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

377

Frame
control

Sequence
number Command ID Field control

Manufacturer
code Image type Current version

Data 01 02 01 00 1E 10 00 00 06 20 00 01

Value 0x01 0x02 0x01 0x00 0x101E 0x0000 0x01002006

Description Query Next Image
Request

HW version not
present

Digi's
manufacturer
code

Firmware
upgrade

0x01: Software
compatibility number
0x002006: Application
version

Query Next Image Response command
(See ZCL Spec §11.13.5)
The Query Next Image Response command should be sent by the server when it receives a Query Next Image request.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Should be set to 0x19, indicating a server-to-client command.

1 1 Sequence
number

Must match the sequence number of the request that prompted this response.

2 1 Command ID 0x02 for Query Next Image Response.

3 1 Status One of three values:

n 0x00 (SUCCESS): An image is available
n 0x98 (NO_IMAGE_AVAILABLE): No upgrade image is available
n 0x7E (NOT_AUTHORIZED): This server isn't authorized to perform an upgrade

Remaining fields are only included if this field contains 0x00 (SUCCESS).

4 2 Manufacturer
code

The Manufacturer code for the available image, parsed from the OTA file header. Must match the
manufacturing code from the Query Next Image request that prompted this response.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

378

Offset Length Field Name Description

6 2 Image type The Image for the available image, parsed from the OTA file header. Must match the manufacturing code from
the Query Next Image request that prompted this response.

8 4 File version The version parsed from the available image's OTA file header.

12 4 Image size The size in bytes of the image that will be sent over the air. This should be the size of the OTA file.

Note This field is handled differently if the client has a firmware version older than 100A. See Does the
download include the OTA header?.

Example
An OTA server could respond to the Query Next Image Request example in the previous section using the following Explicit Addressing Command Request
- 0x11:

7E 00 24 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 19 02 02 00 1E 10 00 00 0A 20 00 01 3A 90 05 00 9D

The payload portion of the API frame (starting at offset 23) is shown below:

Frame
Control

Sequence
Number

Command
ID Status

Manufacturer
Code Image Type File Version Image Size

Data 19 02 02 00 1E 10 00 00 0A 20 00 01 3A 90 05 00

Value 0x19 0x02 0x02 0x00
(SUCCESS)

0x101E 0x0000 0x0100200A 0x0005903A

Description Digi's
manufacturer
code

Firmware
upgrade

Must match value in the
OTA file header.
0x01: Software
compatibility number
0x00200A: Application
version

This indicates that the server has version 0x0100200A available for the client to upgrade to, and that the file's size is 0x0005903A (364,6042) bytes.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

379

Image Block Request command
(See ZCL Spec §11.13.6)
The client sends Image Block Request commands to the server to download the upgrade image data. The client will send requests until it has
downloaded the entire image, as determined by the image size given in the Query Next Image Response from the server.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Will be set to 0x01, indicating a client to server command.

1 1 Sequence
number

Sequence number chosen by the client.

2 1 Command ID 0x03 for Image Block Request.

3 1 Field control Indicates which optional fields are present. No optional fields are currently used by the XBee 3 Zigbee RF
Module.

4 2 Manufacturer
code

The manufacturer code of the image being downloaded.

6 2 Image type The image type of the image being downloaded.

8 4 File version The version number of the file being downloaded.

12 4 File offset The offset at which to begin the data, from the start of the OTA file.

Note This field is handled differently if the client has a firmware version older than 100A. See Does the
download include the OTA header?

13 1 Maximum data
size

The maximum number of bytes of image data the server may include in its response.

Note Optional fields have been omitted here as they are not used by the XBee 3 Zigbee RF Module.

Example
This is an example Explicit Receive Indicator - 0x91 containing an Image Block Request that could be received by a server:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

380

7E 00 25 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 01 12 03 00 1E 10 00 00 0A 20 00 01 34 12 00 00 63 CA

The payload portion of the API frame (starting at offset 21) is shown below:

Frame
control

Sequence
number

Command
ID

Field
control

Manufacturer
code

Image
type Current version File offset

Maximum
data size

Data 01 12 03 00 1E 10 00 00 0A 20 00 01 34 12 00 00 63

Value 0x01 0x12 0x01 0x00 0x101E 0x0000 0x0100200A 0x00001234 0x63

Description Image Block
Request

No optional
fields
present

Digi's
manufacturer
code

Firmware
upgrade

0x01: Software
compatibility
number
0x00200A:
Application version

The client is requesting up to 0x63 bytes of data, starting from offset 0x1234.

Image Block Response command
(See ZCL Spec §11.13.8)
The Image Block Response is generated by the OTA server to send the data asked for in an Image Block Request.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Should be set to 0x19 indicating a server-to-client command.

1 1 Sequence
number

Must match the sequence number of the request that prompted this response.

2 1 Command ID 0x05 for Image Block Response.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

381

Offset Length Field Name Description

3 1 Status This field has one of two values, and determines the structure of the remaining fields:

n 0x00 (SUCCESS): Image data is available. The remaining fields must be included.
n 0x95 (ABORT): Instructs the client to abort the download. The remaining fields must not be included.

Note The 0x97 (WAIT_FOR_DATA) status (see ZCL Spec §11.13.8.1) is not supported.

4 2 Manufacturer
code

The Manufacturer code for the available image, parsed from the OTA file header. Must match the manufacturing
code from the request that prompted this response.

6 2 Image type The Image for the available image, parsed from the OTA file header. Must match the manufacturing code from
the request that prompted this response.

8 4 File version The version parsed from the available image's OTA file header. Must match the version number from the
request that prompted this response.

12 4 File offset The offset into the OTA file where the data begins. Must match the offset from the request that prompted this
response.

Note This field is handled differently if the client has a firmware version older than 100A. See Does the
download include the OTA header?

16 1 Data size The number of bytes of data included in this block. This can be any number less than or equal to the maximum
data size value in the request that prompted this response.

17 n Image data Image data starting from the given offset. The length of this field is determined by the value in the preceding
field (Data Size).

Example
An OTA server could respond to the Image Block Request example in the previous section using the following Explicit Addressing Command Request -
0x11:

7E 00 28 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 19 12 05 00 1E 10 00 00 0A 20 00 01 34 12 00 00 03 69
6D 67 D3

The payload portion of the API frame (starting at offset 23) is shown below:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

382

Frame
control

Sequence
number

Command
ID Status

Manufacturer
code

Image
type File version File offset

Data
size

Image
data

Data 19 12 05 00 1E 10 00 00 0A 20 00 01 34 12 00 00 03 69 6d 67

Value 0x19 0x12 0x05 0x00
(SUCCESS)

0x101E 0x0000 0x0100200A 0x00001234 0x03 69 6d
67

Description Image Block
Response

Digi's
manufacturer
code

Firmware
upgrade

0x01: Software
compatibility
number
0x00200A:
Application
version

This response contains three bytes of data starting at offset 0x1234. The data size value in this example is very small—three bytes—for simplicity; since
any size less than or equal to the client's requestedmaximum is allowed this is a valid frame, but smaller image blocks will increase the time the OTA
upgrade takes.

Upgrade End Request command
(See ZCL Spec §11.13.9)
The Upgrade End Request command is sent by the client when it finishes a download, whether successfully or not.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Will be set to 0x01, indicating a client to server command.

1 1 Sequence
number

Sequence number chosen by the client.

2 1 Command ID 0x06 for Upgrade End Request.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

383

Offset Length Field Name Description

3 1 Status One of four values indicating the status of the download.

n 0x00 (SUCCESS): The client successfully downloaded and verified the image.
n 0x96 (INVALID_IMAGE): The client aborted the download because the downloaded image was invalid or

corrupted.
n 0x95 (ABORT): The client aborted the download for another reason.
n 0x99 (REQUIRE_MORE_IMAGE): The download completed, but additional files are needed for the

upgrade. This status is not used by the XBee 3 Zigbee RF Module.

The value of this field determines what response the server should send. If the status is 0x00 (SUCCESS), the
server should respond with an Upgrade End Response command. Otherwise, the server should respond with a
Default Response command with the SUCCESS status.

4 2 Manufacturer
code

The manufacturer code of the image being downloaded.

6 2 Image type The image type of the image being downloaded.

8 4 File version The version of the image being downloaded

Exampe
This is an example Explicit Receive Indicator - 0x91 containing an Upgrade End Request that could be received by a server:

7E 00 1E 91 00 13 A2 00 55 66 77 88 FF FE E8 E8 00 19 C1 05 01 01 95 06 00 1E 10 00 00 0A 20 00 01 5D

The payload portion of the API frame (starting at offset 21) is shown below:

Frame
control

Sequence
number Command ID Status Manufacturer code Image type File version

Data 01 95 06 00 1E 10 00 00 0A 20 00 01

Value 0x01 0x95 0x06 0x00
(SUCCESS)

0x101E 0x0000 0x0100200A

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

384

Frame
control

Sequence
number Command ID Status Manufacturer code Image type File version

Description Upgrade End
Request

Digi's manufacturer
code

Firmware
upgrade

0x01: Software compatibility
number
0x00200A: Application version

The client has completed the download of version 0x0100200A. The server should respond with an Upgrade End Response command.

Upgrade End Response command
(See ZCL Spec §11.13.9.6)
The Upgrade End Response command is sent by the server when it receives an Upgrade End Request with the SUCCESS status. This command instructs
the device to perform the upgrade, and can be used to schedule an upgrade for a later time. An Upgrade End Response can also be sent without a
request from a client if the client is waiting for an upgrade—scheduled by a previous Upgrade End Response—to change the time to wait for that
upgrade.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Should be set to 0x19 indicating a server-to-client command.

1 1 Sequence
number

If this command is sent in response to an Upgrade End request, the sequence number should match the one
from that request.

2 1 Command ID 0x07 for Upgrade End Response.

3 2 Manufacturer
code

The Manufacturer code for the available image, parsed from the OTA file header. Must match the manufacturer
code from the request that prompted this response.

5 2 Image type The Image for the available image, parsed from the OTA file header. Must match the image type from the
request that prompted this response.

7 4 File version The version parsed from the available image's OTA file header. Must match the version number from the
request that prompted this response.

11 4 Current time The current time, used for scheduled upgrades. See Schedule an upgrade for more information.

15 4 Upgrade time The scheduled upgrade time, used for scheduled upgrades. See Schedule an upgrade for more information.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

385

If the upgrade should be performed immediately and not scheduled for a later time, the Current Time and Upgrade Time fields should be set to the same
value less than 0xFFFFFFFF.

Example
An OTA server could respond to the Image Block Request example in the previous section using the following Explicit Addressing Command Request -
0x11:

7E 00 27 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 19 95 07 1E 10 00 00 0A 20 00 01 00 00 00 00 00 00 00
00 D4

The payload portion of the API frame (starting at offset 23) is shown below:

Frame
control

Sequence
number Command ID

Manufacturer
code Image type File version Current time

Upgrade
time

Data 19 95 07 1E 10 00 00 0A 20 00 01 00 00 00 00 00 00 00

Value 0x19 0x95 0x07 0x101E 0x0000 0x0100200A 0x00000000 0x00000000

Description Upgrade End
Response

Digi's
manufacturer
code

Firmware
upgrade

0x01: Software
compatibility number
0x00200A: Application
version

With the current time and upgrade time both set to 0, the device will reboot and install the upgrade immediately.

Default Response command
(See ZCL Spec §2.5.12)
A Default Response command is sent when a response is needed but there is no other command frame suited to the response.
During the OTA Upgrade process, the client will send a default response with an error status if it receives an invalid command from the server. The only
time the server needs to send a default response is when it receives an Upgrade End Request with an error status; the server responds with a default
response with status 0x00 (SUCCESS) status to indicate that the request was received.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

386

ZCL command format

Offset Length Field Name Description

0 1 Frame control If command is sent by the client: 0x10
If command is sent by the server: 0x18

1 1 Sequence number Must match the sequence number of the command that prompted this Default Response.

2 1 Command ID 0x0B for Default Response.

3 1 (Source) command identifier The command ID of the command that prompted this Default Response.

4 1 Status code A status code indicating success or an error. A full list of status codes, see ZCL Spec §2.6.3.

Error messages sent by the client
The client will send a default response to the server when an error occurs. The significance of the status code in this message depends on what server
command prompted the default response. The Handling Error Cases section of each command's section in the ZCL specification contains detailed
information on what errors a command can produce. Some errors that can be sent by the client are listed below:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

387

Source Command
Identifier Status Description

0x00
(Image Notify)

0x80 (MALFORMED_
COMMAND)

Either one of the errors form ZCL Spec §11.13.3.5.1, or manufacturer code or image type is not valid.

0x70 (REQUEST_
DENIED)

OTA Upgrades have been disabled on this device.

0x8A (DUPLICATE_
EXISTS)

The new version is not valid:

n For firmware upgrades, the new firmware version must be different than what is installed on the
device. Upgrades to the same version are not supported.

n For file system upgrades, the version indicates what firmware version the image supports. It must
match the currently installed firmware.

Make sure the firmware version in the Image Notify is being parsed from the OTA header in the upgrade
image.

0x85 (INVALID_
FIELD)

Firmware is incompatible with the client's %C (Hardware Compatibility) value.

0x02
(Query Next Image
Response)

0x80 (MALFORMED_
COMMAND)

The format of the command is invalid (see ZCL Spec §11.13.5.5).

0x89
(INSUFFICIENT_
SPACE)

The image is too large for the client to store.

0x05
(Image Block
Response)

0x80 (MALFORMED_
COMMAND)

The format of the command is invalid (See ZCL Spec §11.13.8.5).

0x07
(Upgrade End
Response)

0x80 (MALFORMED_
COMMAND)

The format of the command is invalid (See ZCL Spec §11.13.9.9).

Example
After unicasting an Image Notify command to a client, the server may receive the following Explicit Receive Indicator - 0x91 frame containing a Default
Response:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
Zigbee®RF

M
odule

388

7E 00 17 91 00 13 A2 00 55 66 77 88 FF FE E8 E8 00 19 C1 05 01 10 0C 0B 00 8A A1

The payload portion of the API frame (starting at offset 21) is shown below:

Frame control Sequence number Command ID Source command identifier Status

Data 10 0C 0B 00 8A

Value 0x10 0x0C 0x0C 0x00 0x8A (DUPLICATE_EXISTS)

Description Default Response Image Notify

The source command identifier field indicates that the error is in response to an image notify, and the sequence number will match that of the Image
Notify command sent by the server. According to the table above, a DUPLICATE_EXISTS status for an Image Notify means that the firmware version is
invalid—the device is already running the firmware version that the server is trying to send.
When the server needs to send a default response, it can do so using an Explicit Addressing Command Request - 0x11. For example, to send a Default
Response with a SUCCESS status in response to an Upgrade End Request:

7E 00 19 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 18 41 0B 06 00 78

The payload portion of the API frame (starting at offset 23) is shown below:

Frame control Sequence number Command ID Source command identifier Status

Data 18 41 0B 06 00

Value 0x18 0x41 0x0B 0x06 0x00 (SUCCESS)

Description Default Response Upgrade End Response

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 389

Handling unrecognized commands
If the server receives a command with an unrecognized command ID, it should respond with a default
response with status 0x81 (UNSUP_CLUSTER_COMMAND).

Schedule an upgrade
The current time and upgrade time fields of the Upgrade End Response command can be used to
schedule an upgrade for some time in the future. The time can for the upgrade can be scheduled in
several ways:

Current time
value

Upgrade time
value Effect

0x00000000-
0xFFFFFFFE

Equal to current
time

The device will upgrade immediately.

0x00000000 0x00000001-
0xFFFFFFFE

Delayed upgrade: the device will upgrade after the number of
seconds indicated by the upgrade time value.

0x00000001-
0xFFFFFFFE
(Current time
in seconds
since midnight
Jan 1, 2000)

Any value
greater than
current time and
less than
0xFFFFFFFF
(Intended
upgrade time in
seconds since
midnight Jan 1,
2000)

Scheduled upgrade: the device will determine how long to wait
by subtracting current time from upgrade time, and wait that
long before upgrading.

Any 0xFFFFFFFF Prompted upgrade: The device will not upgrade, and will wait
indefinitely to receive another Upgrade End Response with the
server. The second upgrade end response can schedule an
upgrade with any of the above methods.

Note When performing a scheduled upgrade, we recommend that the OTA upgrade server continue to
monitor for and respond to OTA commands until after the time the upgrade is meant to be applied. If
the client loses power while waiting to apply a scheduled upgrade, it will send another Upgrade End
Request to the server when it regains power in an attempt to resume the schedule. If the client does
not receive a response from the server after a few tries, it applies the upgrade without confirmation
from the server.

Scheduled upgrades on sleeping devices
To schedule an upgrade, an XBee 3 Zigbee RF Module makes use of internal software timers, which
only count time while the device is awake. So a sleeping device takes significantly longer to apply the
scheduled upgrade than a non-sleeping device. Consider this limitation when scheduling an upgrade
on a sleeping device.

Formula for estimating when a sleeping device will apply an upgrade
upgrade_delay = number of seconds the upgrade was scheduled for (upgradeTime- currentTime
fields in the Upgrade End Response frame)

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 390

sleep_time = amount of time the device is estimated to be asleep (SP for an asynchronous sleeping
device)
wake_time = amount of time the device is estimated to be awake (ST for an asynchronous sleeping
device)
total_time = sleep_time + wake_time
expected_upgrade_delay = upgrade_delay * (total_time / wake_time)

Asynchronous cyclic sleep scheduled upgrades
A device that is configured for asynchronous cyclic sleep will only be awake for a few milliseconds at a
time, therefore we do not recommend that you schedule an upgrade for a sleeping node with this
configuration. However, if the device is configured to always stay awake for ST time then the
scheduled upgrade can be estimated by using the above formula—where wake_time = ST and sleep_
time = SP. You can configure a device to always stay awake for ST by setting SO bit 1 to one—for
example, SO = 0x01.

Pin sleep scheduled upgrades
Since the device only counts time while it is awake, scheduling an upgrade on a pin sleeping device
may be unpredictable. However, if a pin sleeping device has predictable sleep patterns it is possible to
estimate when a scheduled upgrade will be applied. The sleep estimate formula can be applied to a
pin sleeping device to estimate when it will apply the upgrade.

Aggressively sleeping devices
If a device is asynchronously sleeping, and keeping it awake for all of ST time is undesired, then we
recommend performing a scheduled upgrade in the following manner:

1. Configure the sleeping node for indirect messaging:
a. Configure the sleeping device with the following parameters:

n CE = 0 (router)
n DH, DL should be set to match SH, SL of the OTA server device

b. Make sure that ST and SP of the sleeping device and OTA server radio match.
c. Set all of the transmit option fields of the API frames sent to the OTA server device to

0x40.
2. Download the firmware/file system image to the sleeping device as described in this section.

a. When sending the Upgrade End Response frame set the upgradeTime to 0xFFFFFFFF—
instructing the sleeping device to wait for another upgrade end request before applying
the upgrade.

3. Wait for the desired amount of time to pass.
4. When the time to have the sleeping device apply its upgrade has arrived, send a second

Upgrade End Response to the sleeping device with the currentTime and upgradeTime fields
both set to 0x0000. This causes the sleeping device to apply the upgrade immediately.

Considerations for older firmware versions
Some changes need to be made to this OTA upgrade process for some previous versions of the
software.

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 391

Version 1009 and prior: Only the GBL file is sent over the air
When the firmware is sent over the air it must be sent without including the OTA header and sub-
element tags. See Does the download include the OTA header?

Version 1009 and prior: Delayed ACK for some packets
The Query Next Image Response and the final Image Block Response both cause the client to perform
a long operation—erasing/verifying OTA update data in the storage slot. On these versions, the
network ACK for the transmission is not sent until after this operation completes. This means that the
server will time out waiting for an ACK, and the transmission will appear to fail even though it was in
fact received by the client.
On Zigbee, this error can be worked around by enabling the extended APS timeout. Set bit six of the
Transmit Options field (0x40) in the transmit API frame, at least when sending a Query Next Image
Response or the final Image Block Response.

Version 1008 and prior: Recovering from failed client transmissions
On XBee 3 Zigbee versions 1008 and previous, the OTA client will not attempt to resend a request to
the server if it fails due to network conditions. This is known to occur in large networks when the
client attempts to send the first Image Block Request or the Upgrade End Request, but could happen
at any time during the download due to a failed transmission.
When this occurs, it will appear to the server as though the client stopped sending requests. The
server can recover the update from this state using the following method:

1. When sending messages to the client, the OTA server should check the TX status of the
transmission to ensure it was successfully delivered to the client.

2. When the server waits for the client's response, it should do so with a timeout.
n How long this timeout should be can vary based on network settings, but something

like 20 seconds should cover most cases.
n Keep in mind when determining the timeout that the client can take a long time (6-8

seconds) to process some OTA commands, such as the Query Next Image Response or
the final Image Block Response.

3. If the server does not receive the request from the client, the server should proceed and send
the next response, as though it had received the expected request from the client.

n For this process, note that firmware versions 1008 and prior will always specify 64 for
the maximum data size field of an Image Block Request if encryption is disabled, and
44 if it is enabled. Use these as the maximum sizes when constructing image blocks.

n For example, if the last packet sent before the timeout was a Query Next Image
Response, the server should send an Image Block Request with the first image block,
for example 64 bytes—or 44 on an encrypted network—starting at offset 0.

n If the last packet sent before the timeout was an Image Block Response, the server
should send another Image Block Response starting immediately after the end of the
last block sent and of the same size.

n If the last packet sent before the timeout was an Image Block Response containing the
final bytes of the image, the server should send an Upgrade End Response.

4. The client will accept the generated response and continue the update. Failures like this should
not happen consistently; If the server times out and has to do this for more than about three

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 392

packets in a row without hearing from the client, it should assume communication with the
client is lost and the update has failed.

Note This method should only be used when updating from a version 1008 or prior. On newer versions
the client will resend failed requests, and sending a response unprompted like this could cause an
error in the download.

Version 1007 and prior: OTA commands cannot be sent with fragmentation
An OTA update with any of these versions as the client will fail if an OTA command is sent with
fragmentation. This is why Image Block Requests sent by these versions set the maximum data size
to 64 or 44 bytes. However, on networks with source routing enabled—this includes any network that
is using encryption—this means that if a message is sent with a route record included then the
payload size must be decreased even more to ensure fragmentation is not used. This can be handled
one of two ways by the server:

1. Set AR to 0xFF on the server for the duration of the update. This will ensure that the OTA
server does not send route records to the client, and is the recommendedmethod when
updating devices from version 1007 or earlier.

2. Alternatively, if the number of relays between the server and the client is known, the image
block size can be reduced to accommodate the reduced payload size.

n The payload should be reduced by one byte plus two byes for each relay node—including
the client.

n The payload should then be further reduced to a multiple of four.
n Be aware that the route could change during the update due to changing network

conditions, so it would be wise to include some additional overhead.

Does the download include the OTA header?
Most OTA files consist of an OTA header, a sub-element tag, and a single sub-element: The upgrade
image. For firmware versions 100A and newer, the entire OTA file is sent to the client during an OTA
Upgrade. However, for versions older than 100A, only the contents of the file's single sub-element
should be sent—not the OTA header or the sub-element tag. This affects several fields in the upgrade
process.
When dealing with these two methods it is useful to know the image offset of the OTA file—that is,
the offset at which the upgrade image data actually begins. This can be calculated by taking the size
of the OTA header—which can be parsed from near the beginning of the OTA file—and adding six bytes
for the sub-element header: two bytes for the tag, four bytes for the length.

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 Zigbee® RF Module 393

Command Field

Value when sending
without header
(pre-100A)

Value
when
sending
with
header
(100A
and
later) Notes

Query Next
Image
Response

Image
size

The size of the
upgrade image
parsed from the first
sub-element tag's
length value, or the
total size of the OTA
file minus the image
offset.

The total
size of the
OTA file.

In either case, this is the total number
of bytes that the client needs to
download. This value should never be
determined by reading the Total
Image Size field from the OTA header,
as that field contains incorrect
information onmost older firmware
files.

Image Block File
offset

This refers to the
offset from the start
of the upgrade image
data—add the image
offset to this value to
get the offset into the
OTA file.

This
refers to
the offset
into the
OTA file.

Note For compatibility with older OTA upgrade servers, newer firmware versions support both
methods for a firmware upgrade. File system upgrades only support the method corresponding to the
installed firmware version, as described above. We recommend using the newer method where
possible to ensure compatibility with future releases.

OTA file system upgrades

After a FOTA update, all file system data and bundled MicroPython code is erased. To continue running
code, a new file system needs to be sent to the device after the firmware update is complete. This
section contains information on how to update the file system of remote devices over the air.

OTA file system update process 395
OTA file system updates using XCTU 395
OTA file system updates: OEM 399

Digi XBee® 3 Zigbee® RF Module 394

OTA file system upgrades OTA file system update process

Digi XBee® 3 Zigbee® RF Module 395

OTA file system update process
Since OTA file system updates are signed, remote devices must be configured so that they can
validate incoming updates. To set up a network for OTA file system updates:

1. Generate a public/private Elliptic Curve Digital Signature Algorithm (ECDSA) signing key pair.
2. Using the generated public key, set FK (File System Public Key) on all devices that will receive

OTA file system updates.

Note You cannot set FK remotely. You must either set FK before the XBee 3 Zigbee RF Module is
deployed, or else serial access to the device is needed to set it.

To perform an OTA file system update:

1. On a local device, create a copy of the file system that you want to send over the air.
2. Create an OTA file system image, signed using the private key generated previously.
3. Perform an OTA update using the created OTA file.

Note The local device used to create the file system image must have the same firmware version
installed as the target device or the file system will be rejected. Use VR (Firmware Version) to check
the version number on both the staging and target devices.

You can perform all of these steps automatically through XCTU or manually using other tools.

OTA file system updates using XCTU
Use the following steps to perform a file system update OTA using XCTU:

1. Generate a public/private key pair
2. Set the public key on the XBee 3 device
3. Create the OTA file system image
4. Perform the OTA file system update

Generate a public/private key pair
XCTU provides an ECDSA key pair generator that you can use to store a public/private key pair in .pem
files. To access the Generate file system key pair dialog:

1. Open the File System Manager dialog box.
2. Click Keys as shown below.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee® 3 Zigbee® RF Module 396

3. Click Generate in the Generate file system key pair dialog.
4. Save both the keys in a safe location and close the dialog box.

Set the public key on the XBee 3 device
1. Open the configuration view of the target device in XCTU and go to the File System category.
2. In the File System Public Key row, click Configure.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee® 3 Zigbee® RF Module 397

3. In the Configure File System Public Key dialog box, click Browse and choose the .pem file
that you saved the public key into. Once this is done, the HEX value of the public key is visible
under the Public key section on the dialog box as shown.

4. Click OK to ensure that the key gets written into the device.

Note This can be only be done locally. XBee 3 firmware DOES NOT support remotely setting the file
system public key at this time.

Create the OTA file system image
To create the OTA file system image:

1. Open the File System Manager dialog box.
2. Open a connection on the device that you want to generate the OTA file system image from.
3. Click FS Image.
4. In the Generate a signed file system image window that displays, click Browse and choose

the .pem file that the private key was stored in.
5. Once the path shows up on the Private Key file field, click Save to assign the .fs.ota an

appropriate file name and location.
6. Save the file.

You will be prompted with a File system image successfully saved dialog box if the file was
successfully generated.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee® 3 Zigbee® RF Module 398

Perform the OTA file system update
1. To add the target device, click Discover radios in the same network from the source device.
2. Enter Configuration mode on the remote device.
3. Click the down arrow next to the Update button and choose Update File System.

4. Choose the OTA file system image (.fs.ota) that the target node needs to be updated to.
5. Click Open.

OTA file system upgrades OTA file system updates: OEM

Digi XBee® 3 Zigbee® RF Module 399

Once the file system image is completely transferred andmounted on the remote device, XCTU
informs you that the file system has been updated successfully.

OTA file system updates: OEM
Use the following steps to perform a file system update OTA using OEM tools:

1. Generate a public/private key pair
2. Set the public key on the XBee 3 device

OTA file system upgrades OTA file system updates: OEM

Digi XBee® 3 Zigbee® RF Module 400

3. Create the OTA file system image
4. Perform the OTA file system update

Generate a public/private key pair
Generate ECDSA signing keys using secp256r1 curve parameters (also known as prime256v1 or NIST
P-256).
To generate a public/private key pair using OpenSSL, run the following command:

openssl ecparam -name prime256v1 -genkey -outform pem -out keypair.pem

To extract the private key from the key pair generated above:

openssl pkcs8 -topk8 -inform pem -in pair.pem -outform pem -nocrypt -out
private.pem

To extract the public key from the key pair generated above:

openssl ec -in keypair.pem -pubout -out public.pem

Set the public key on the XBee 3 device
The public keys generated by XCTU and OpenSSL are stored in *.pem files. These files need to be
parsed to get the value to use when setting FK. To parse a public key file, run:

openssl asn1parse -in public.pem -dump

The command will produce something like the following output:

0:d=0 hl=2 l= 89 cons: SEQUENCE
2:d=1 hl=2 l= 19 cons: SEQUENCE
4:d=2 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
13:d=2 hl=2 l= 8 prim: OBJECT :prime256v1
23:d=1 hl=2 l= 66 prim: BIT STRING

0000 - 00 04 95 50 aa 55 b6 f5-5d 99 4d d8 15 d1 71 57 ...P.U..].M...qW
0010 - 51 80 d5 14 ec 1f 6a 15-51 a2 c4 b8 0f 77 10 8a Q.....j.Q....w..
0020 - 33 a3 80 07 47 40 14 8b-5c a7 4c 78 02 fc 4d 82 3...G@..\.Lx..M.
0030 - 90 4b 39 98 62 a1 1d 97-6e 78 fb 54 62 06 d2 41 .K9.b...nx.Tb..A
0040 - c7 3b

The public key should be 65 bytes long - it is the BIT STRING value at the end, with the leading 00
omitted; in this case:

049550aa55b6f55d994dd815d171575180d514ec1f6a1551a2c4b80f77108a33a380074740148b5ca
74c7802fc4d82904b399862a11d976e78fb546206d241c73b

Create the OTA file system image
You can create a file system image outside of XCTU using any utility that can perform ECDSA signing.
These instructions show how to do so using OpenSSL. To create an OTA file system image, use the
following steps.

Create a staged file system
In order to create a usable file system image, first create a 'staged' copy of the file system you want
to send on a local device.

OTA file system upgrades OTA file system updates: OEM

Digi XBee® 3 Zigbee® RF Module 401

Use the FS command or MicroPython to load all of the files that you want to send onto the local
staging device.

Note The staging device must have the same firmware version installed as the target device or the
file system will be rejected. Use the VR command to check the version number on both the staging
and target devices.

Download the file system image
Run the command ATFS GET /sys/xbfs.bin to download an image of the file system from the staging
device. The file is transferred using the YMODEM protocol. See File system for more information on
downloading files using FS GET.

Pad the file system image
The file system image must be a multiple of 2048 bytes long before it is signed. Using hex editing
software, add 0xFF bytes to the end of the downloaded image until size of the file is a multiple of 2048
(0x800 in hex).

Calculate the image signature
Once the image has been padded to a multiple of 2048 bytes, it is ready to be signed. The ECDSA
signature should be calculated using SHA256 as the hash algorithm.
Assuming a public/private key pair has been generated as described in Generate a public/private key
pair, that the private key is named private.pem, and that the padded image is named xbfs.bin; this
can be done using OpenSSL with the following command:

openssl dgst -sha256 -sign private.pem -binary -out sig.bin xbfs.bin

sig.bin will contain the signature for the image.
Append the calculated signature to the image
The signature should be between 70 and 72 bytes, and it should be appended to the padded image.

Create the OTA file
Put the image into an OTA file that follows the format specified in ZigBee Document 095264r23. The
file should consist of:

n An OTA header
n An upgrade image sub-element tag
n The padded, signed image data

The OTA file must begin with an OTA header. See The OTA header for information on the format of the
header. The image type should be 0x0100 for a file system image upgrade.
The sub-element tag should come before the image data. The sub-element tag follows the format
described in section 6.3.3 of ZigBee Document 095264r23. It consists of 6 bytes: the first 2 bytes are
the tag id and should be set to 0x0000. The next 4 bytes contain the length of the file system image in
little-endian format.

Perform the OTA file system update
The process for performing an OTA file system update is the same as the process for performing a
FOTA upgrade, as described in Over-the-air firmware/file system upgrade process for Zigbee 3.0. Note

https://web.archive.org/web/20171031170452/http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf
https://web.archive.org/web/20171031170452/http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf

OTA file system upgrades OTA file system updates: OEM

Digi XBee® 3 Zigbee® RF Module 402

that the data that goes in the image blocks starts at the beginning of the image data, after the OTA
header and sub-element tag.

	Digi XBee® 3 Zigbee® RF Module
	Applicable firmware and hardware
	Change the firmware protocol
	Regulatory information

	Get started
	Configure the XBee 3 Zigbee RF Module
	Configure the device using XCTU
	Custom defaults
	Set custom defaults
	Restore factory defaults
	Limitations

	Custom configuration: Create a new factory default
	Set a custom configuration
	Clear all custom configuration on a device

	XBee bootloader
	Send a firmware image
	Software libraries
	XBee Network Assistant
	XBee Multi Programmer

	Update the firmware over-the-air
	Add the device to XCTU
	Update to the latest firmware

	Get started with MicroPython
	About MicroPython
	MicroPython on the XBee 3 Zigbee RF Module
	Use XCTU to enter the MicroPython environment
	Use the MicroPython Terminal in XCTU
	MicroPython examples
	Example: hello world
	Example: enter MicroPython paste mode
	Example: use the time module
	Example: AT commands using MicroPython

	MicroPython networking and communication examples
	Zigbee networks with MicroPython
	Example: forming and joining a Zigbee network using MicroPython
	Example: network Discovery using MicroPython
	Examples: transmitting data
	Receiving data
	Example: communication between two XBee 3 Zigbee modules

	Exit MicroPython mode
	Other terminal programs
	Tera Term for Windows

	Use picocom in Linux
	Micropython help ()

	Secure access
	Secure Sessions
	Configure the secure session password for a device
	Start a secure session
	End a secure session

	Secured remote AT commands
	Secure a node against unauthorized remote configuration
	Remotely configure a node that has been secured

	Send data to a secured remote node
	End a session from a server
	Secure Session API frames
	Secure transmission failures
	Data Frames - 0x10 and 0x11 frames
	Remote AT Commands- 0x17 frames

	File system
	Overview of the file system
	Directory structure
	Paths
	Limitations
	XCTU interface

	Get started with BLE
	Enable BLE on the XBee 3 Zigbee RF Module
	Enable BLE and configure the BLE password
	Get the Digi XBee Mobile phone application
	Connect with BLE and configure your XBee 3 device

	BLE reference
	BLE advertising behavior and services
	Device Information Service
	XBee API BLE Service
	API Request characteristic
	API Response characteristic

	Serial communication
	Serial interface
	UART data flow
	Serial data

	Serial buffers
	Serial receive buffer
	Serial transmit buffer

	UART flow control
	CTS flow control
	RTS flow control

	Break control
	I2C

	SPI operation
	SPI communications
	Full duplex operation
	Low power operation
	Select the SPI port
	Force UART operation

	Modes
	Transparent operating mode
	Serial-to-RF packetization

	API operating mode
	Command mode
	Enter Command mode
	Troubleshooting
	Send AT commands
	Response to AT commands
	Apply command changes
	Make command changes permanent
	Exit Command mode

	Idle mode
	Transmit mode
	Receive mode
	Sleep mode

	Zigbee networks
	The Zigbee specification
	Zigbee stack layers
	Zigbee networking concepts
	Device types
	PAN ID
	Operating channels

	Zigbee application layers: in depth
	Application Support Sublayer (APS)
	Application profiles

	Zigbee coordinator operation
	Form a network
	Security policy
	Channel selection
	PAN ID selection
	Persistent data
	Coordinator startup
	Permit joining
	Reset the coordinator
	Leave a network
	Replace a coordinator (security disabled only)
	Example: start a coordinator
	Example: replace a coordinator (security disabled)

	Router operation
	Discover Zigbee networks
	Join a network
	Authentication
	Persistent data
	Router joining
	Router network connectivity

	End device operation
	Discover Zigbee networks
	Join a network
	Parent child relationship
	End device capacity
	Authentication
	Persistent data
	Orphan scans
	End device joining
	Parent connectivity
	Reset the end device

	Channel scanning
	Manage multiple Zigbee networks
	Filter PAN ID
	Configure security keys
	Prevent unwanted devices from joining
	Application messaging framework

	Transmission, addressing, and routing
	Addressing
	64-bit device addresses
	16-bit device addresses
	Application layer addressing

	Data transmission
	Broadcast transmissions
	Unicast transmissions
	Address resolution
	Address table
	Group table

	Binding transmissions
	Multicast transmissions
	Address resolution
	Address resolution
	Binding table

	Fragmentation
	Data transmission examples
	Send a packet in Transparent mode
	Send data in API mode
	API frame examples

	RF packet routing
	Link status transmission
	AODV mesh routing
	Many-to-One routing
	High/Low RAM Concentrator mode
	Source routing

	Encrypted transmissions
	Maximum RF payload size
	Throughput
	ZDO transmissions
	Send a ZDO command
	Receiving ZDO command and responses
	Support ZDOs with the XBee API
	Support the ZDP with the XBee API
	ZDO Clusters
	API example 1
	API example 2
	API example 3
	API example 4
	API example 5
	API example 6
	API Example 7

	Transmission timeouts
	Unicast timeout
	Extended timeout
	Transmission examples

	Zigbee security
	Security overview
	Network key
	Link key
	Preconfigured link key - moderate security
	Well-known default link key - low security
	Install code derived link key - high security

	Join window
	Key management
	Centralized security
	Distributed security

	Device registration
	Centralized trust center
	Distributed trust center
	Example: Form a secure network
	Example: Join a secure network using a preconfigured link key
	Example: Register a joining node without a preconfigured link key
	Example: Register a joining node using an install code
	Example: Deregister a previously registered device
	Registration scenario

	Centralized trust center backup
	Create the backup file
	New networks
	Existing networks

	Store the file
	Recover a Centralized Trust Center
	Best practices
	Network commissioning and diagnostics
	Place devices
	Device discovery
	Commissioning pushbutton and associate LED
	Binding
	Group Table API

	Manage End Devices
	End device operation
	Parent operation
	End Device poll timeouts
	End Device child table
	Packet buffer usage

	Non-Parent device operation
	End Device configuration
	Pin sleep
	Cyclic sleep

	Recommended sleep current measurements
	Achieve the lowest sleep current
	Compensate for switching time
	Internal pin pull-ups

	Transmit RF data
	Receiving RF data
	I/O sampling
	Wake end devices with the Commissioning Pushbutton
	Parent verification
	Rejoining
	Router/Coordinator configuration
	RF packet buffering timeout
	Child poll timeout
	Adaptive polling
	Transmission timeout

	Short sleep periods
	Extended sleep periods
	Sleep examples
	Example 1: Configure a device to sleep for 20 seconds, but set SN such that t...
	Example 2: Configure an end device to sleep for 20 seconds, send 4 I/O sample...
	Example 3: configure a device for extended sleep: to sleep for 4 minutes.

	I/O support
	Digital I/O support
	Analog I/O support
	Monitor I/O lines
	I/O sample data format
	API frame support
	On-demand sampling
	Example: Command mode
	Example: Local AT command in API mode
	Example: Remote AT command in API mode

	Periodic I/O sampling
	Source
	Destination

	Digital I/O change detection
	I/O behavior during sleep
	Digital I/O lines
	Analog and PWM I/O Lines

	AT commands
	Networking commands
	CE (Device Role)
	ID (Extended PAN ID)
	II (Initial 16-bit PAN ID)
	ZS (Zigbee Stack Profile)
	CR (Conflict Report)
	NJ (Node Join Time)
	DJ (Disable Joining)
	NR (Network Reset)
	NW (Network Watchdog Timeout)
	JV (Coordinator Join Verification)
	JN (Join Notification)
	DO (Miscellaneous Device Options)
	DC (Joining Device Controls)
	C8 (Compatibility Options)

	Discovery commands
	NI (Node Identifier)
	DD (Device Type Identifier)
	NT (Node Discover Timeout)
	NO (Network Discovery Options)
	ND (Network Discovery)
	DN (Discover Node)
	AS (Active Scan)

	Operating Network commands
	AI (Association Indication)
	OP (Operating Extended PAN ID)
	OI (Operating 16-bit PAN ID)
	CH (Operating Channel)
	NC (Number of Remaining Children)

	Zigbee Addressing commands
	SH (Serial Number High)
	SL (Serial Number Low)
	MY (16-bit Network Address)
	MP (16-bit Parent Network Address)
	DH (Destination Address High)
	DL (Destination Address Low)
	TO (Transmit Options)
	NP (Maximum Packet Payload Bytes)

	Zigbee configuration commands
	NH (Maximum Unicast Hops)
	BH (Broadcast Hops)
	AR (Aggregate Routing Notification)
	SE (Source Endpoint)
	DE (Destination Endpoint)
	CI (Cluster ID)

	Security commands
	EE (Encryption Enable)
	EO (Encryption Options)
	KY (Link Key)
	NK (Trust Center Network Key)
	RK (Trust Center Network Key Rotation Interval)
	KT (Trust Center Link Key Registration Timeout)
	I? (Install Code)
	DM (Disable Features)
	BK (Centralized Trust Center Backup and Restore)
	CX (Centralized Trust Center Network Information Update)
	KB (Centralized Trust Center Backup Key)

	Secure Session commands
	SA (Secure Access)
	*S (Secure Session Salt)
	*V, *W, *X, *Y (Secure Session Verifier)

	RF interfacing commands
	PL (TX Power Level)
	PP (Output Power in dBm)
	SC (Scan Channels)
	SD (Scan Duration)

	MAC diagnostics commands
	EA (MAC ACK Failure Count)
	DB (Last Packet RSSI)
	ED (Energy Detect)

	Sleep settings commands
	SM (Sleep Mode)
	SP (Cyclic Sleep Period)
	ST (Cyclic Sleep Wake Time)
	SN (Number of Sleep Periods)
	SO (Sleep Options)
	WH (Wake Host Delay)
	PO (Polling Rate)
	ET (End Device Timeout)
	SI (Sleep Immediately)

	MicroPython commands
	PS (Python Startup)
	PY (MicroPython Command)

	File System commands
	FS (File System)
	FK (File System Public Key)

	Bluetooth Low Energy (BLE) commands
	BT (Bluetooth Enable)
	BL (Bluetooth Address)
	BI (Bluetooth Identifier)
	BP (Bluetooth Power)
	$S (SRP Salt)
	$V, $W, $X, $Y commands (SRP Salt verifier)

	API configuration commmands
	AP (API Enable)
	AO (API Options)
	AZ (Extended API Options)

	UART interface commands
	BD (UART Baud Rate)
	NB (Parity)
	SB (Stop Bits)
	RO (Packetization Timeout)

	AT Command options
	CC (Command Character)
	CT (Command Mode Timeout)
	GT (Guard Times)
	CN (Exit Command mode)

	UART pin configuration commands
	D6 (DIO6/RTS)
	D7 (DIO7/CTS)
	P3 (DIO13/DOUT Configuration)
	P4 (DIO14/DIN Configuration)

	SMT/MMT SPI interface commands
	P5 (DIO15/SPI_MISO Configuration)
	P6 (DIO16/SPI_MOSI Configuration)
	P7 (DIO17/SPI_SSEL Configuration)
	P8 (DIO18/SPI_CLK Configuration)
	P9 (DIO19/SPI_ATTN Configuration)

	I/O settings commands
	D0 (DIO0/AD0/Commissioning Button Configuration)
	CB (Commissioning Pushbutton)
	D1 (AD1/DIO1/TH_SPI_ATTN Configuration)
	D2 (DIO2/AD2/TH_SPI_CLK Configuration)
	D3 (DIO3/AD3/TH_SPI_SSEL Configuration)
	D4 (DIO4/TH_SPI_MOSI Configuration)
	D5 (DIO5/Associate Configuration)
	D8 (DIO8/DTR/SLP_RQ)
	D9 (DIO9/ON_SLEEP)
	P0 (DIO10/RSSI Configuration)
	P1 (DIO11 Configuration)
	P2 (DIO12/TH_SPI_MISO Configuration)
	PR (Pull-up/Down Resistor Enable)
	PD (Pull Up/Down Direction)
	M0 (PWM0 Duty Cycle)
	M1 (PWM1 Duty Cycle)
	RP (RSSI PWM Timer)
	LT (Associate LED Blink Time)

	I/O sampling commands
	IR (I/O Sample Rate)
	IC (Digital Change Detection)
	AV (Analog Voltage Reference)
	IS (Force Sample)
	V+ (Supply Voltage Threshold)

	Location commands
	LX (Location X—Latitude)
	LY (Location Y—Longitude)
	LZ (Location Z—Elevation)

	Diagnostic commands - firmware/hardware information
	VR (Firmware Version)
	VL (Version Long)
	VH (Bootloader Version)
	HV (Hardware Version)
	%C (Hardware/Software Compatibility)
	R? (Power Variant)
	%V (Voltage Supply Monitoring)
	TP (Temperature)
	CK (Configuration Checksum)
	%P (Invoke Bootloader)

	Memory access commands
	FR (Software Reset)
	AC (Apply Changes)
	WR (Write)
	RE (Restore Defaults)

	Custom Default commands
	%F (Set Custom Default)
	!C (Clear Custom Defaults)
	R1 (Restore Factory Defaults)

	API Operation
	API serial exchanges
	AT commands
	Transmit and Receive RF data
	Remote AT commands
	Source routing
	Device Registration

	API frame format
	API operation (AP parameter = 1)
	API operation with escaped characters (AP parameter = 2)

	Send ZDO commands with the API
	Example

	Send Zigbee cluster library (ZCL) commands with the API
	Example

	Send Public Profile Commands with the API
	Frame specific data
	Example

	Frame descriptions
	Local AT Command Request - 0x08
	Description
	Format
	Examples

	Queue Local AT Command Request - 0x09
	Description
	Format
	Examples

	Transmit Request - 0x10
	Description
	Transmit options bit field
	Examples

	Explicit Addressing Command Request - 0x11
	Description
	64-bit addressing
	16-bit addressing
	Zigbee-specific addressing information
	Reserved endpoints
	Reserved cluster IDs
	Reserved profile IDs
	Transmit options bit field
	Examples

	Remote AT Command Request - 0x17
	Description
	Format
	Examples

	Create Source Route - 0x21
	Description
	Format
	Examples

	Register Joining Device - 0x24
	Description
	Format
	Examples

	BLE Unlock Request - 0x2C
	Description
	Format
	Phase tables
	Examples

	User Data Relay Input - 0x2D
	Description
	Use cases
	Format
	Error cases
	Examples

	Secure Session Control - 0x2E
	Description
	Format
	Examples

	Description
	Format
	Examples
	Set local command parameter
	Query local command parameter

	Modem Status - 0x8A
	Description
	Format

	Modem status codes
	Examples

	Extended Transmit Status - 0x8B
	Description
	Format
	Delivery status codes
	Examples

	Transmit Status - 0x89
	Description
	Format
	Delivery status codes
	Examples

	Receive Packet - 0x90
	Description
	Format
	Examples

	Explicit Receive Indicator - 0x91
	Description
	Format
	Examples

	I/O Sample Indicator - 0x92
	Description
	Format
	Examples

	Node Identification Indicator - 0x95
	Description
	Format
	Examples

	Remote AT Command Response- 0x97
	Description
	Format
	Examples

	Extended Modem Status - 0x98
	Description
	Format
	Secure Session status codes
	Examples
	Zigbee Verbose Join status codes

	Route Record Indicator - 0xA1
	Description
	Format
	Examples

	Registration Status - 0xA4
	Description
	Format
	Examples

	Many-to-One Route Request Indicator - 0xA3
	Description
	Format
	Examples

	BLE Unlock Response - 0xAC
	Description

	User Data Relay Output - 0xAD
	Description
	Format
	Error cases
	Examples

	Secure Session Response - 0xAE
	Description
	Format
	Examples

	OTA firmware/file system upgrades
	Overview
	Firmware over-the-air upgrades
	File system over-the-air upgrades

	Scheduled upgrades
	Create an OTA upgrade server
	ZCL firmware upgrade cluster specification
	Differences from the ZCL specification
	OTA files
	OTA upgrade process
	OTA commands
	Schedule an upgrade
	Scheduled upgrades on sleeping devices
	Considerations for older firmware versions
	Does the download include the OTA header?

	OTA file system upgrades
	OTA file system update process
	OTA file system updates using XCTU
	Generate a public/private key pair
	Set the public key on the XBee 3 device
	Create the OTA file system image
	Perform the OTA file system update

	OTA file system updates: OEM
	Generate a public/private key pair
	Set the public key on the XBee 3 device
	Create the OTA file system image
	Perform the OTA file system update

